Gonadotropin releasing hormone agonists vs. antagonists in women with polycystic ovary disease undergoing ICSI

2007 ◽  
Vol 88 ◽  
pp. S122
Author(s):  
K. Sofuoglu ◽  
B. Kars ◽  
E. Caliskan ◽  
D. Oztekin ◽  
N. Tug ◽  
...  
2020 ◽  
Vol 7 (8) ◽  
pp. 201040
Author(s):  
Jonathon Penix ◽  
R. Anthony DeFazio ◽  
Eden A. Dulka ◽  
Santiago Schnell ◽  
Suzanne M. Moenter

Gonadotropin-releasing hormone (GnRH) neurons form the final pathway for the central neuronal control of fertility. GnRH is released in pulses that vary in frequency in females, helping drive hormonal changes of the reproductive cycle. In the common fertility disorder polycystic ovary syndrome (PCOS), persistent high-frequency hormone release is associated with disrupted cycles. We investigated long- and short-term action potential patterns of GnRH neurons in brain slices before and after puberty in female control and prenatally androgenized (PNA) mice, which mimic aspects of PCOS. A Monte Carlo (MC) approach was used to randomize action potential interval order. Dataset distributions were analysed to assess (i) if organization persists in GnRH neuron activity in vitro , and (ii) to determine if any organization changes with development and/or PNA treatment. GnRH neurons in adult control, but not PNA, mice produce long-term patterns different from MC distributions. Short-term patterns differ from MC distributions before puberty but become absorbed into the distributions with maturation, and the distributions narrow. These maturational changes are blunted by PNA treatment. Firing patterns of GnRH neurons in brain slices thus maintain organization dictated at least in part by the biologic status of the source and are disrupted in models of disease.


Sign in / Sign up

Export Citation Format

Share Document