scholarly journals SEGMENTAL ANEUPLOIDY RATES OBSERVED IN ∼192,000 BLASTOCYSTS BY FAST-SEQS SUPPORT INCLUSION IN PGT-A ASSAYS

2020 ◽  
Vol 114 (3) ◽  
pp. e32-e33
Author(s):  
Lauren Walters-Sen ◽  
Dana Neitzel ◽  
Sara L. Bristow ◽  
Asia D. Mitchell ◽  
Nicole Faulkner ◽  
...  
Keyword(s):  
Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 675-682
Author(s):  
Victoria L Browning ◽  
Rebecca A Bergstrom ◽  
Sandra Daigle ◽  
John C Schimenti

Abstract Proper levels of gene expression are important for normal mammalian development. Typically, altered gene dosage caused by karyotypic abnormalities results in embryonic lethality or birth defects. Segmental aneuploidy can be compatible with life but often results in contiguous gene syndromes. The ability to manipulate the mouse genome allows the systematic exploration of regions that are affected by alterations in gene dosage. To explore the effects of segmental haploidy in the mouse t complex on chromosome 17, radiation-induced deletion complexes centered at the Sod2 and D17Leh94 loci were generated in embryonic stem (ES) cells. A small interval was identified that, when hemizygous, caused specific embryonic lethal phenotypes (exencephaly and edema) in most fetuses. The penetrance of these phenotypes was background dependent. Additionally, evidence for parent-of-origin effects was observed. This genetic approach should be useful for identifying genes that are imprinted or whose dosage is critical for normal embryonic development.


1999 ◽  
Vol 64 (6) ◽  
pp. 1702-1708 ◽  
Author(s):  
Carole Brewer ◽  
Susan Holloway ◽  
Paul Zawalnyski ◽  
Albert Schinzel ◽  
David FitzPatrick

Genetics ◽  
1974 ◽  
Vol 76 (2) ◽  
pp. 301-309
Author(s):  
Barbara R Stewart ◽  
John R Merriam

ABSTRACT A method of mapping genes which specify enzymes without the necessity of obtaining genetic variants has been explored. Three enzymes whose structural genes have known genetic positions were chosen to see if the relationship between gene dosage and enzyme activity could be used as a tool in cytological localization. Zw, the gene specifying G6PD, is located in the X chromosome region, 18D-18F. The structural gene for 6PGD, Pgd, maps in the X chromosome bands 2C1-2E1. Idh-NADP, the gene which specifies IDH-NADP, is found on the third chromosome, in bands 66B-67C.


Genetics ◽  
1976 ◽  
Vol 83 (3) ◽  
pp. 517-535
Author(s):  
Jeffrey C Hall ◽  
Douglas R Kankel

ABSTRACT Genes in Drosophila melanogaster that control acetylcholinesterase (AChE) were searched for by segmental aneuploidy techniques. Homogenates of flies containing duplications or deletions for different segments were assayed for enzyme activity. A region on the third chromosome was found for which flies having one does consistently gave lower AChE activity than euploid flies, which were in turn had lower activity than flies with three doses. The activity differences were in the approximate ratio 1:2:3. Fine structure deletion mapping within this region revealed a very small segment for which one-dose flies have approximately half-normal activity. To obtain putative AchE-null mutations, lethal mutations within this region were assayed. Four allelic lethals have approximately half-normal activity in heterozygous condition. These lethals probably define the structural locus (symbol: Ace) for AChE.


2021 ◽  
Vol 116 (3) ◽  
pp. e379-e380
Author(s):  
Thomas T.F. Huang ◽  
Kristen S. Hori ◽  
Kaitlin H. Hori ◽  
Celia E. Dominguez ◽  
Thomas T. Kosasa

2020 ◽  
Vol 35 (4) ◽  
pp. 759-769
Author(s):  
M C Magli ◽  
C Albanese ◽  
A Crippa ◽  
G Terzuoli ◽  
G La Sala ◽  
...  

Abstract STUDY QUESTION Is de novo segmental aneuploidy (SA) a biological event or an artifact that is erroneously interpreted as partial chromosome imbalance? SUMMARY ANSWER The detection of de novo SA in sequential biopsies of preimplantation embryos supports the biological nature of SA. WHAT IS KNOWN ALREADY Although some SAs are detected in oocytes and in blastocysts, the highest incidence is observed in cleavage-stage embryos. Based on these findings, we can postulate that the majority of cells affected by SAs are eliminated by apoptosis or that affected embryos mainly undergo developmental arrest. STUDY DESIGN, SIZE, DURATION This retrospective study includes 342 preimplantation genetic testing for aneuploidy (PGT-A) cycles performed between January 2014 and December 2018. Chromosome analysis was performed on 331 oocytes, 886 cleavage-stage embryos and 570 blastocysts (n = 1787). From 268 expanded blastocysts, the blastocoelic fluid (BF) was also analyzed (resulting in 2025 samples in total). In cases of SAs involving loss or gain in excess of 15 Mb, embryos were not considered for transfer and sequential biopsies were performed at following stages. This resulted in 66 sets where the initial diagnosis of SAs (4 made in polar bodies, 25 in blastomeres and 37 in trophectoderm (TE) cells) was followed up. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 2082 samples (2025 + 27 whole embryos) were processed by whole genome amplification followed by array comparative genomic hybridization. MAIN RESULTS AND THE ROLE OF CHANCE The incidence of SAs was 6.3% in oocytes, increased to 16.6% in cleavage-stage embryos (P < 0.001) and decreased to 11.2% in blastocysts (P < 0.025 versus oocytes; P < 0.01 versus cleavage-stage embryos). The highest incidence of SAs was found in BFs (26.1%, P < 0.001). The analysis of 66 sets of sequential biopsies revealed that the initial finding was confirmed in all following samples from 39 sets (59.1% full concordance). In 12 additional sets, SAs were detected in some samples while in others the interested chromosome had full aneuploidy (18.2%). In three more sets, there was a partial concordance with the initial diagnosis in some samples, but in all TE samples the interested chromosome was clearly euploid (4.5%). In the remaining 12 sets, the initial SA was not confirmed at any stage and the corresponding chromosomes were euploid (18.2% no concordance). The pattern of concordance was not affected by the number of SAs in the original biopsy (single, double or complex) or by the absence or presence of concomitant aneuploidies for full chromosomes. LIMITATIONS, REASONS FOR CAUTION Chromosome analyses were performed on biopsies that might not be representative of the true constitution of the embryo itself due to the occurrence of mosaicism. WIDER IMPLICATIONS OF THE FINDINGS The permanence of SAs throughout the following stages of embryo development in more than half of the analyzed sets suggests for this dataset a very early origin of this type of chromosome imbalance, either at meiosis or at the first mitotic divisions. Since SAs remained in full concordance with the initial diagnosis until the blastocyst stage, a corrective mechanism seems not to be in place. In the remaining cases, it is likely that, as for full chromosome aneuploidy, mosaicism derived from mitotic errors could have occurred. In following cell divisions, euploid cell lines could prevail preserving the embryo chances of implantation. Due to the scarcity of data available, the transfer of embryos with SAs should be strictly followed up to establish possible clinical consequences related to this condition. STUDY FUNDING/COMPETING INTEREST(S) No specific funding was obtained. There are no conflicts of interest.


2019 ◽  
Vol 20 (19) ◽  
pp. 4935
Author(s):  
Márta Czakó ◽  
Ágnes Till ◽  
András Szabó ◽  
Réka Ripszám ◽  
Béla Melegh ◽  
...  

Among human supernumerary marker chromosomes, the occurrence of isodicentric form of 15 origin is relatively well known due to its high frequency, both in terms of gene content and associated clinical symptoms. The associated epilepsy and autism are typically more severe than in cases with interstitial 15q duplication, despite copy number gain of approximately the same genomic region. Other mechanisms besides segmental aneuploidy and epigenetic changes may also cause this difference. Among the factors influencing the expression of members of the GABAA gene cluster, the imprinting effect and copy number differences has been debated. Limited numbers of studies investigate factors influencing the interaction of GABAA cluster homologues. Five isodicentric (15) patients are reported with heterogeneous symptoms, and structural differences of their isodicentric chromosomes based on array comparative genomic hybridization results. Relations between the structure and the heterogeneous clinical picture are discussed, raising the possibility that the structure of the isodicentric (15), which has an asymmetric breakpoint and consequently a lower copy number segment, would be the basis of the imbalance of the GABAA homologues. Studies of trans interaction and regulation of GABAA cluster homologues are needed to resolve this issue, considering copy number differences within the isodicentric chromosome 15.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Olivia Sheppard ◽  
Frances K. Wiseman ◽  
Aarti Ruparelia ◽  
Victor L. J. Tybulewicz ◽  
Elizabeth M. C. Fisher

Abnormalities of chromosome copy number are called aneuploidies and make up a large health load on the human population. Many aneuploidies are lethal because the resulting abnormal gene dosage is highly deleterious. Nevertheless, some whole chromosome aneuploidies can lead to live births. Alterations in the copy number of sections of chromosomes, which are also known as segmental aneuploidies, are also associated with deleterious effects. Here we examine how aneuploidy of whole chromosomes and segmental aneuploidy of chromosomal regions are modeled in the mouse. These models provide a whole animal system in which we aim to investigate the complex phenotype-genotype interactions that arise from alteration in the copy number of genes. Although our understanding of this subject is still in its infancy, already research in mouse models is highlighting possible therapies that might help alleviate the cognitive effects associated with changes in gene number. Thus, creating and studying mouse models of aneuploidy and copy number variation is important for understanding what it is to be human, in both the normal and genomically altered states.


Sign in / Sign up

Export Citation Format

Share Document