The polyketide synthase gene pks4 is essential for sexual development and regulates fruiting body morphology in Sordaria macrospora

2014 ◽  
Vol 68 ◽  
pp. 48-59 ◽  
Author(s):  
Daniel Schindler ◽  
Minou Nowrousian
2010 ◽  
Vol 9 (6) ◽  
pp. 894-905 ◽  
Author(s):  
V. Klix ◽  
M. Nowrousian ◽  
C. Ringelberg ◽  
J. J. Loros ◽  
J. C. Dunlap ◽  
...  

ABSTRACT Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular basis of homothallism and the role of mating-type genes during fruiting-body development, we deleted each of the three genes, SmtA-1 (MAT1-1-1), SmtA-2 (MAT1-1-2), and SmtA-3 (MAT1-1-3), contained in the MAT1-1 part of the mating-type locus of the homothallic ascomycete species Sordaria macrospora. Phenotypic analysis of deletion mutants revealed that the PPF domain protein-encoding gene SmtA-2 is essential for sexual reproduction, whereas the α domain protein-encoding genes SmtA-1 and SmtA-3 play no role in fruiting-body development. By means of cross-species microarray analysis using Neurospora crassa oligonucleotide microarrays hybridized with S. macrospora targets and quantitative real-time PCR, we identified genes expressed under the control of SmtA-1 and SmtA-2. Both genes are involved in the regulation of gene expression, including that of pheromone genes.


1999 ◽  
Vol 19 (1) ◽  
pp. 450-460 ◽  
Author(s):  
Minou Nowrousian ◽  
Sandra Masloff ◽  
Stefanie Pöggeler ◽  
Ulrich Kück

ABSTRACT During sexual development, mycelial cells from most filamentous fungi differentiate into typical fruiting bodies. Here, we describe the isolation and characterization of the Sordaria macrosporadevelopmental mutant per5, which exhibits a sterile phenotype with defects in fruiting body maturation. Cytological investigations revealed that the mutant strain forms only ascus precursors without any mature spores. Using an indexed cosmid library, we were able to complement the mutant to fertility by DNA-mediated transformation. A single cosmid clone, carrying a 3.5-kb region able to complement the mutant phenotype, has been identified. Sequencing of the 3.5-kb region revealed an open reading frame of 2.1 kb interrupted by a 66-bp intron. The predicted polypeptide (674 amino acids) shows significant homology to eukaryotic ATP citrate lyases (ACLs), with 62 to 65% amino acid identity, and the gene was named acl1. The molecular mass of the S. macrospora ACL1 polypeptide is 73 kDa, as was verified by Western blot analysis with a hemagglutinin (HA) epitope-tagged ACL1 polypeptide. Immunological in situ detection of the HA-tagged polypeptide demonstrated that ACL is located within the cytosol. Sequencing of the mutant acl1 gene revealed a 1-nucleotide transition within the coding region, resulting in an amino acid substitution within the predicted polypeptide. Further evidence that ACL1 is essential for fruiting body maturation comes from experiments in which truncated and mutated versions of theacl1 gene were used for transformation. None of these copies was able to reconstitute the fertile phenotype in transformed per5 recipient strains. ACLs are usually involved in the formation of cytosolic acetyl coenzyme A (acetyl-CoA), which is used for the biosynthesis of fatty acids and sterols. Protein extracts from the mutant strain showed a drastic reduction in enzymatic activity compared to values obtained from the wild-type strain. Investigation of the time course of ACL expression suggests that ACL is specifically induced at the beginning of the sexual cycle and produces acetyl-CoA, which most probably is a prerequisite for fruiting body formation during later stages of sexual development. We discuss the contribution of ACL activity to the life cycle of S. macrospora.


2016 ◽  
Vol 79 (6) ◽  
pp. 1485-1491 ◽  
Author(s):  
Po-Wei Yu ◽  
Ya-Chih Chang ◽  
Ruey-Fen Liou ◽  
Tzong-Huei Lee ◽  
Shean-Shong Tzean

PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0199110 ◽  
Author(s):  
Yi Wang ◽  
Changan Geng ◽  
Xiaolong Yuan ◽  
Mei Hua ◽  
Fenghua Tian ◽  
...  

1998 ◽  
Vol 187 (2) ◽  
pp. 79-89 ◽  
Author(s):  
K. Langfelder ◽  
Bernhard Jahn ◽  
Heike Gehringer ◽  
Axel Schmidt ◽  
Gerhard Wanner ◽  
...  

2007 ◽  
Vol 6 (7) ◽  
pp. 1210-1218 ◽  
Author(s):  
Daren W. Brown ◽  
Robert A. E. Butchko ◽  
Mark Busman ◽  
Robert H. Proctor

ABSTRACT Fumonisins are mycotoxins produced by some Fusarium species and can contaminate maize or maize products. Ingestion of fumonisins is associated with diseases, including cancer and neural tube defects, in humans and animals. In fungi, genes involved in the synthesis of mycotoxins and other secondary metabolites are often located adjacent to each other in gene clusters. Such genes can encode structural enzymes, regulatory proteins, and/or proteins that provide self-protection. The fumonisin biosynthetic gene cluster includes 16 genes, none of which appear to play a role in regulation. In this study, we identified a previously undescribed gene (FUM21) located adjacent to the fumonisin polyketide synthase gene, FUM1. The presence of a Zn(II)2Cys6 DNA-binding domain in the predicted protein suggested that FUM21 was involved in transcriptional regulation. FUM21 deletion (Δfum21) mutants produce little to no fumonisin in cracked maize cultures but some FUM1 and FUM8 transcripts in a liquid GYAM medium. Complementation of a Δfum21 mutant with a wild-type copy of the gene restored fumonisin production. Analysis of FUM21 cDNAs identified four alternative splice forms (ASFs), and microarray analysis indicated the ASFs were differentially expressed. Based on these data, we present a model for how FUM21 ASFs may regulate fumonisin biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document