Persistence of mobile species in marine protected areas

2008 ◽  
Vol 91 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Urmila Malvadkar ◽  
Alan Hastings
2008 ◽  
Vol 66 (1) ◽  
pp. 122-131 ◽  
Author(s):  
W. J. F. Le Quesne ◽  
Edward A. Codling

Abstract Le Quesne, W. J. F., and Codling, E. A. 2009. Managing mobile species with MPAs: the effects of mobility, larval dispersal, and fishing mortality on closure size. – ICES Journal of Marine Science, 66: 122–131. The use of closed areas (marine protected areas, marine reserves, no-take zones) has been suggested as a possible solution to the perceived global fisheries crisis. However, to optimize the design and evaluate the effectiveness of closed areas, we need to understand the interaction between larval dispersal, adult mobility, and fishing mortality. In this paper, a simple, spatially explicit dynamic population model was developed to examine the effects of these interacting factors on optimal closure size and resulting yields. The effect of using one large or several smaller closed areas was also examined. Our model confirmed previous results: closed areas do not improve the yield of populations that are optimally managed or underexploited and, as mobility increases, optimum closure size increases. The model also predicted some interesting counter-intuitive results; for overexploited stocks, the greatest benefit from closed areas can be obtained for stocks with highest mobility, although this may require closure of 85% of the total area. For the tested parameter settings, adult spillover had greater potential to improve yield than larval export, and using several small closed areas rather than a single larger one had the same effect as increasing the mobility of the population.


2015 ◽  
Vol 370 (1681) ◽  
pp. 20140278 ◽  
Author(s):  
Elizabeth A. Fulton ◽  
Nicholas J. Bax ◽  
Rodrigo H. Bustamante ◽  
Jeffrey M. Dambacher ◽  
Catherine Dichmont ◽  
...  

Models provide useful insights into conservation and resource management issues and solutions. Their use to date has highlighted conditions under which no-take marine protected areas (MPAs) may help us to achieve the goals of ecosystem-based management by reducing pressures, and where they might fail to achieve desired goals. For example, static reserve designs are unlikely to achieve desired objectives when applied to mobile species or when compromised by climate-related ecosystem restructuring and range shifts. Modelling tools allow planners to explore a range of options, such as basing MPAs on the presence of dynamic oceanic features, and to evaluate the potential future impacts of alternative interventions compared with ‘no-action’ counterfactuals, under a range of environmental and development scenarios. The modelling environment allows the analyst to test if indicators and management strategies are robust to uncertainties in how the ecosystem (and the broader human–ecosystem combination) operates, including the direct and indirect ecological effects of protection. Moreover, modelling results can be presented at multiple spatial and temporal scales, and relative to ecological, economic and social objectives. This helps to reveal potential ‘surprises', such as regime shifts, trophic cascades and bottlenecks in human responses. Using illustrative examples, this paper briefly covers the history of the use of simulation models for evaluating MPA options, and discusses their utility and limitations for informing protected area management in the marine realm.


2018 ◽  
Vol 8 (18) ◽  
pp. 9241-9258 ◽  
Author(s):  
Milaja Nykänen ◽  
Eileen Dillane ◽  
Anneli Englund ◽  
Andrew D. Foote ◽  
Simon N. Ingram ◽  
...  

2016 ◽  
Vol 548 ◽  
pp. 263-275 ◽  
Author(s):  
RE Lindsay ◽  
R Constantine ◽  
J Robbins ◽  
DK Mattila ◽  
A Tagarino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document