marine realm
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 75)

H-INDEX

28
(FIVE YEARS 5)

2022 ◽  
Author(s):  
◽  
Taylor R. Sehein

Protists are taxonomically and metabolically diverse drivers of energy and nutrient flow in the marine environment, with recent research suggesting significant roles in global carbon cycling throughout the water column. Top-down controls on planktonic protists include grazing and parasitism, processes that both contribute to nutrient transfer and biogeochemical cycling in the global ocean. Recent global surveys of eukaryotic small subunit ribosomal RNA molecular signatures have highlighted the fact that parasites belonging to the marine alveolate order Syndiniales are both abundant and ubiquitous in coastal and open ocean environments, suggesting a major role for this taxon in marine food webs. Two coastal sites, Saanich Inlet (Vancouver Island, BC) and Salt Pond (Falmouth, MA, USA) were selected as model ecosystems to examine the impacts of Syndinian parasitism on protist communities. Data presented in this thesis combines high-resolution sampling, water chemistry (including nutrients) analyses, molecular marker gene analyses, fluorescence in situ hybridization, and modeling to address key knowledge gaps regarding syndinian ecology. Information is presented on previously undescribed putative host taxa, the prevalence of syndinian parasites and infections on different hosts in coastal waters, and a framework for modeling host-parasite interactions based on field observations.


Fishes ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Imanol Miqueleiz ◽  
Rafael Miranda ◽  
Arturo Hugo Ariño ◽  
Elena Ojea

Biodiversity loss is a global problem, accelerated by human-induced pressures. In the marine realm, one of the major threats to species conservation, together with climate change, is overfishing. In this context, having information on the conservation status of target commercial marine fish species becomes crucial for assuring safe standards. We put together fisheries statistics from the FAO, the IUCN Red List, FishBase, and RAM Legacy databases to understand to what extent top commercial species’ conservation status has been assessed. Levels of assessment for top-fished species were higher than those for general commercial or highly commercial species, but almost half of the species have outdated assessments. We found no relation between IUCN Red List traits and FishBase Vulnerability Index, depreciating the latter value as a guidance for extinction threat. The RAM database suggests good management of more-threatened species in recent decades, but more data are required to assess whether the trend has reverted in recent years. Outdated IUCN Red List assessments can benefit from reputed stock assessments for new reassessments. The future of IUCN Red List evaluations for commercial fish species relies on integrating new parameters from fisheries sources and improved collaboration with fisheries stakeholders and managers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ahmed El-Gabbas ◽  
Ilse Van Opzeeland ◽  
Elke Burkhardt ◽  
Olaf Boebel

Species distribution models (SDMs) relate species information to environmental conditions to predict potential species distributions. The majority of SDMs are static, relating species presence information to long-term average environmental conditions. The resulting temporal mismatch between species information and environmental conditions can increase model inference’s uncertainty. For SDMs to capture the dynamic species-environment relationships and predict near-real-time habitat suitability, species information needs to be spatiotemporally matched with environmental conditions contemporaneous to the species’ presence (dynamic SDMs). Implementing dynamic SDMs in the marine realm is highly challenging, particularly due to species and environmental data paucity and spatiotemporally biases. Here, we implemented presence-only dynamic SDMs for four migratory baleen whale species in the Southern Ocean (SO): Antarctic minke, Antarctic blue, fin, and humpback whales. Sightings were spatiotemporally matched with their respective daily environmental predictors. Background information was sampled daily to describe the dynamic environmental conditions in the highly dynamic SO. We corrected for spatial sampling bias by sampling background information respective to the seasonal research efforts. Independent model evaluation was performed on spatial and temporal cross-validation. We predicted the circumantarctic year-round habitat suitability of each species. Daily predictions were also summarized into bi-weekly and monthly habitat suitability. We identified important predictors and species suitability responses to environmental changes. Our results support the propitious use of dynamic SDMs to fill species information gaps and improve conservation planning strategies. Near-real-time predictions can be used for dynamic ocean management, e.g., to examine the overlap between habitat suitability and human activities. Nevertheless, the inevitable spatiotemporal biases in sighting data from the SO call for the need for improving sampling effort in the SO and using alternative data sources (e.g., passive acoustic monitoring) in future SDMs. We further discuss challenges of calibrating dynamic SDMs on baleen whale species in the SO, with a particular focus on spatiotemporal sampling bias issues and how background information should be sampled in presence-only dynamic SDMs. We also highlight the need to integrate visual and acoustic data in future SDMs on baleen whales for better coverage of environmental conditions suitable for the species and avoid constraints of using either data type alone.


2021 ◽  
Vol 8 ◽  
Author(s):  
Emna Zeghal ◽  
Annika Vaksmaa ◽  
Hortense Vielfaure ◽  
Teun Boekhout ◽  
Helge Niemann

Plastic debris has been accumulating in the marine realm since the start of plastic mass production in the 1950s. Due to the adverse effects on ocean life, the fate of plastics in the marine environment is an increasingly important environmental issue. Microbial degradation, in addition to weathering, has been identified as a potentially relevant breakdown route for marine plastic debris. Although many studies have focused on microbial colonization and the potential role of microorganisms in breaking down marine plastic debris, little is known about fungi-plastic interactions. Marine fungi are a generally understudied group of microorganisms but the ability of terrestrial and lacustrine fungal taxa to metabolize recalcitrant compounds, pollutants, and some plastic types (e.g., lignin, solvents, pesticides, polyaromatic hydrocarbons, polyurethane, and polyethylene) indicates that marine fungi could be important degraders of complex organic matter in the marine realm, too. Indeed, recent studies demonstrated that some fungal strains from the ocean, such as Zalerion maritimum have the ability to degrade polyethylene. This mini-review summarizes the available information on plastic-fungi interactions in marine environments. We address (i) the currently known diversity of fungi colonizing marine plastic debris and provide (ii) an overview of methods applied to investigate the role of fungi in plastic degradation, highlighting their advantages and drawbacks. We also highlight (iii) the underestimated role of fungi as plastic degraders in marine habitats.


Author(s):  
Colin von Negenborn

AbstractGoverning human interaction in the maritime space implicitly rests on the ascription of value to this space. Environmental ethics helps to disentangle the many concepts of value that may come in conflict. As a particularly contested concept, ecocentrism assigns value not just at the atomistic level, but also at the holistic one. It has, however, been subject to criticism, thus challenging the validity of recent approaches to ocean management implicitly resting on ecocentric grounds. This paper provides a new justification for ecocentrism in the marine realm. Instead of relying on notions of community or teleonomy in nature, this paper builds on its ontology. It considers “the Area” beyond national jurisdiction and its declaration as “common heritage.” While a shared understanding of this concept is necessary to put it to practice in the intergovernmental sphere, the paper argues that any characterization of its ontology is subject to fuzziness. In the light of disagreement, fluctuation, and uncertainty on the atomistic level, a holistic perspective on the Area is necessary. Ecocentrism thus allows to overcome the conceptual hindrances and facilitates the implementation of a genuinely common heritage.


2021 ◽  
Vol 51 (4) ◽  
pp. 267-285
Author(s):  
Beatriz Lima Vieira ◽  
Letícia Rizzetto Patrocínio ◽  
Douglas Villela de Oliveira Lessa ◽  
Doriedson Ferreira Gomes

ABSTRACT Scientometrics is a field of study that involves measuring and analyzing scientific literature and can be a valuable tool to assess and reveal major gaps in national scientific production. Among the major challenges for Brazilian science is the development of research in the extensive national marine realm. This paper provides a scientometric survey of papers involving foraminiferal research in Brazil. The metrics utilized were papers listed in “Capes Portal” and “Scopus” databases up to the year of 2019. A total of 324 papers were found and 177 were selected based upon criteria established. A generalized additive model (GAM) was used to establish a relationship between publications and time. Studies involving foraminifera increased in Brazil from 1952 to 2019. Most studies have been conducted in the southeast region. We identified the need for more research on foraminifera to be carried out in the Brazilian continental margin, especially in the north and northeast regions of the country.


Cladistics ◽  
2021 ◽  
Author(s):  
María del Rosario Martín‐Hervás ◽  
Leila Carmona ◽  
Manuel António E. Malaquias ◽  
Patrick J. Krug ◽  
Terrence M. Gosliner ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
David E. Cade ◽  
William T. Gough ◽  
Max F. Czapanskiy ◽  
James A. Fahlbusch ◽  
Shirel R. Kahane-Rapport ◽  
...  

AbstractBio-logging devices equipped with inertial measurement units—particularly accelerometers, magnetometers, and pressure sensors—have revolutionized our ability to study animals as necessary electronics have gotten smaller and more affordable over the last two decades. These animal-attached tags allow for fine scale determination of behavior in the absence of direct observation, particularly useful in the marine realm, where direct observation is often impossible, and recent devices can integrate more power hungry and sensitive instruments, such as hydrophones, cameras, and physiological sensors. To convert the raw voltages recorded by bio-logging sensors into biologically meaningful metrics of orientation (e.g., pitch, roll and heading), motion (e.g., speed, specific acceleration) and position (e.g., depth and spatial coordinates), we developed a series of MATLAB tools and online instructional tutorials. Our tools are adaptable for a variety of devices, though we focus specifically on the integration of video, audio, 3-axis accelerometers, 3-axis magnetometers, 3-axis gyroscopes, pressure, temperature, light and GPS data that are the standard outputs from Customized Animal Tracking Solutions (CATS) video tags. Our tools were developed and tested on cetacean data but are designed to be modular and adaptable for a variety of marine and terrestrial species. In this text, we describe how to use these tools, the theories and ideas behind their development, and ideas and additional tools for applying the outputs of the process to biological research. We additionally explore and address common errors that can occur during processing and discuss future applications. All code is provided open source and is designed to be useful to both novice and experienced programmers.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11898
Author(s):  
Anne-Nina Lörz ◽  
Stefanie Kaiser ◽  
Jens Oldeland ◽  
Caroline Stolter ◽  
Karlotta Kürzel ◽  
...  

The waters around Iceland, bounding the Northern North Atlantic and the Nordic seas, are a region characterized by complex hydrography and seabed topography. This and the presence of the Greenland-Iceland-Faroe-Scotland ridge (GIFR) are likely to have a major impact on the diversity and distribution of the benthic fauna there. Biodiversity in this region is also under increasing threat from climate-induced changes, ocean warming and acidification in particular, affecting the marine realm. The aim of the present study was to investigate the biodiversity and distributional patterns of amphipod crustaceans in Icelandic waters and how it relates to environmental variables and depth. A comprehensive data set from the literature and recent expeditions was compiled constituting distributional records for 355 amphipod species across a major depth gradient (18–3,700 m). Using a 1° hexagonal grid to map amphipod distributions and a set of environmental factors (depth, pH, phytobiomass, velocity, dissolved oxygen, dissolved iron, salinity and temperature) we could identify four distinct amphipod assemblages: A Deep-North, Deep-South, and a Coastal cluster as well as one restricted to the GIFR. In addition to depth, salinity and temperature were the main parameters that determined the distribution of amphipods. Diversity differed greatly between the depth clusters and was significantly higher in coastal and GIFR assemblages compared to the deep-sea clusters north and south of the GIFR. A variety of factors and processes are likely to be responsible for the perceived biodiversity patterns, which, however, appear to vary according to region and depth. Low diversity of amphipod communities in the Nordic basins can be interpreted as a reflection of the prevailing harsh environmental conditions in combination with a barrier effect of the GIFR. By contrast, low diversity of the deep North Atlantic assemblages might be linked to the variable nature of the oceanographic environment in the region over multiple spatio-temporal scales. Overall, our study highlights the importance of amphipods as a constituent part of Icelandic benthos. The strong responses of amphipod communities to certain water mass variables raise the question of whether and how their distribution will change due to climate alteration, which should be a focus of future studies.


Sign in / Sign up

Export Citation Format

Share Document