Experimental investigation on heat transfer mechanisms of pneumatically conveyed solids׳ plugs as a means to mass flow rate measurement

2014 ◽  
Vol 40 ◽  
pp. 232-237 ◽  
Author(s):  
Yingna Zheng ◽  
Don McGlinchey ◽  
John Pugh ◽  
Yang Li
Author(s):  
Mohd. Fua’ad Rahmat ◽  
Wee Lee Yaw

This paper discussed the electrostatic sensors that have been constructed for real–time mass flow rate measurement of particle conveying in a Pneumatic pipeline. Many industrial processes require continuous, smooth, and consistent delivery of solids materials with a high accuracy of controlled flow rate. This requirement can only be achieved by installing a proper measurement system. Electrostatic sensor offers the most inexpensive and simplest means of measuring solids flows in pipes. Key words: Electrostatic sensor, cross-correlation, peripheral velocity


2012 ◽  
Author(s):  
Herlina Abdul Rahim ◽  
Akmal Hayati Rusli ◽  
Nor Saradatul Akmar Zulkifli

Kertas kerja ini menjelaskan beberapa jenis penggunaan penderia untuk mengukur laju aliran pepejal yang mengalir di penghantar pneumatik. Setiap penderia akan menggunakan prinsip yang berbeza tetapi kebanyakan darinya mampu mencapai kesilapan homogen sebanyak 10%. Teknik–teknik ini termasuk penderia kapasitan, penderia elektrostatik, penderia gelombang mikro, penderia radiologi, kombinasi penderia elektrostatik dan digital imej dan lain–lain. Reka bentuk penderiaan harus seragam, maka zarah yang ada dalam kawasan penderiaan akan memberikan hasil yang sama terhadap isyarat mengalir. Kata kunci: Aliran pepeja; penderia; penghantar pneumatic; kaedah pengukuran This paper describes several types of sensor use in measuring mass flow rate of solids flowing in pneumatic conveyors. Each sensor will applied different principle but most of them are able to achieve 10% homogeneity error. These sensor techniques include capacitance sensor, electrostatic sensor, microwave sensor, radiological sensor, combination of electrostatic and digital imaging sensor and others. The sensing filed designs need to be uniform, thus particles exist within the sensing field will contribute equally to the flow signal. Key words: Mass flow rate; sensor; pneumatic conveyor; measurement methods


Author(s):  
Daniele Massini ◽  
Bruno Facchini ◽  
Mirko Micio ◽  
Riccardo Da Soghe

A rotating test rig, reproducing a rotor-stator cavity with an axial admission system, has been exploited for an experimental investigation on the internal flow field and its effect on heat transfer on the stator side. Working conditions were varied in a wide range of rotating velocities and superposed mass flow rates. 2D PIV flow measurements were performed in order to obtain a radial distribution of the tangential velocity, results were used to validate numerical simulations aimed at understanding the admission system effect on the swirl distribution. Heat transfer coefficient distribution along the stator disk has been evaluated performing a steady state technique exploiting Thermo-chromic Liquid Crystals (TLC). Tests have been performed varying the superposed mass flow rate up to reaching the condition of cavity completely sealed, further increase of the mass flow rate showed to reduce the effect of the rotation. Working conditions were set in order to investigate cases missing in open literature, however few tests performed in similarity with other researches provided comparable results.


Sign in / Sign up

Export Citation Format

Share Document