Experimental investigation on wake behind a wavy cylinder having sinusoidal cross-sectional area variation

2007 ◽  
Vol 39 (4) ◽  
pp. 292-304 ◽  
Author(s):  
Sang-Joon Lee ◽  
Anh-Tuan Nguyen
1997 ◽  
Vol 119 (4) ◽  
pp. 851-853 ◽  
Author(s):  
G. R. Stroes ◽  
I. Catton

This paper discusses an experimental investigation of the performance of capillary channels with sinusoidal versus triangular geometry. Results indicate that for equivalent cross-sectional area, angle of inclination, and heat input from below, a triangular groove geometry sustains a larger wetted area while a sinusoidal groove geometry supports a greater average heat flux.


2020 ◽  
Vol 87 (5) ◽  
pp. 332-342
Author(s):  
Mario Radschun ◽  
Annette Jobst ◽  
Jörg Himmel ◽  
Olfa Kanoun

AbstractThe development of innovative measuring technology for process optimization in hot rolling mills becomes more and more relevant because of increasing demands on product quality. Measurement technology for high-resolution non-contact cross-sectional area measurement has shown that the variation in cross-sectional area contains information about the rolling process. This information can be used for the development of new measurement devices and analytical methods for process optimization. The harsh environmental conditions and strict safety regulations result in great effort when implementing a new sensor prototype in hot rolling mills. For this reason, this work presents a mechatronic test stand that can simulate the cross-sectional area variation under laboratory conditions realistically.


1994 ◽  
Vol 07 (03) ◽  
pp. 110-113 ◽  
Author(s):  
D. L. Holmberg ◽  
M. B. Hurtig ◽  
H. R. Sukhiani

SummaryDuring a triple pelvic osteotomy, rotation of the free acetabular segment causes the pubic remnant on the acetabulum to rotate into the pelvic canal. The resulting narrowing may cause complications by impingement on the organs within the pelvic canal. Triple pelvic osteotomies were performed on ten cadaver pelves with pubic remnants equal to 0, 25, and 50% of the hemi-pubic length and angles of acetabular rotation of 20, 30, and 40 degrees. All combinations of pubic remnant lengths and angles of acetabular rotation caused a significant reduction in pelvic canal-width and cross-sectional area, when compared to the inact pelvis. Zero, 25, and 50% pubic remnants result in 15, 35, and 50% reductions in pelvic canal width respectively. Overrotation of the acetabulum should be avoided and the pubic remnant on the acetabular segment should be minimized to reduce postoperative complications due to pelvic canal narrowing.When performing triple pelvic osteotomies, the length of the pubic remnant on the acetabular segment and the angle of acetabular rotation both significantly narrow the pelvic canal. To reduce post-operative complications, due to narrowing of the pelvic canal, overrotation of the acetabulum should be avoided and the length of the pubic remnant should be minimized.


2020 ◽  
Vol 0 (4) ◽  
pp. 19-24
Author(s):  
I.M. UTYASHEV ◽  
◽  
A.A. AITBAEVA ◽  
A.A. YULMUKHAMETOV ◽  
◽  
...  

The paper presents solutions to the direct and inverse problems on longitudinal vibrations of a rod with a variable cross-sectional area. The law of variation of the cross-sectional area is modeled as an exponential function of a polynomial of degree n . The method for reconstructing this function is based on representing the fundamental system of solutions of the direct problem in the form of a Maclaurin series in the variables x and λ. Examples of solutions for various section functions and various boundary conditions are given. It is shown that to recover n unknown coefficients of a polynomial, n eigenvalues are required, and the solution is dual. An unambiguous solution was obtained only for the case of elastic fixation at one of the rod’s ends. The numerical estimation of the method error was made using input data noise. It is shown that the error in finding the variable crosssectional area is less than 1% with the error in the eigenvalues of longitudinal vibrations not exceeding 0.0001.


Sign in / Sign up

Export Citation Format

Share Document