Development of a PCR-RFLP method based on the transcription elongation factor 1-α gene to differentiate Fusarium graminearum from other species within the Fusarium graminearum species complex

2018 ◽  
Vol 70 ◽  
pp. 28-32 ◽  
Author(s):  
Gabriela Garmendia ◽  
Mariana Umpierrez-Failache ◽  
Todd J. Ward ◽  
Silvana Vero
FEBS Letters ◽  
2021 ◽  
Author(s):  
Pallabi Mitra ◽  
Abhijit S. Deshmukh ◽  
Sneha Banerjee ◽  
Chittiraju Khandavalli ◽  
Chinmayee Choudhury

2008 ◽  
Vol 98 (2) ◽  
pp. 159-166 ◽  
Author(s):  
H. Suga ◽  
G. W. Karugia ◽  
T. Ward ◽  
L. R. Gale ◽  
K. Tomimura ◽  
...  

Members of the Fusarium graminearum species complex are important cereal pathogens worldwide and belong to one of at least nine phylogenetically distinct species. We examined 298 strains of the F. graminearum species complex collected from wheat or barley in Japan to determine the species and trichothecene chemotype. Phylogenetic analyses and species-diagnostic polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLPs) revealed the presence and differential distribution of F. graminearum sensu stricto (s. str.) and F. asiaticum in Japan. F. graminearum s. str. is predominant in the north, especially in the Hokkaido area, while F. asiaticum is predominant in southern regions. In the Tohoku area, these species co-occurred. Trichothecene chemotyping of all strains by multiplex PCR revealed significantly different chemotype compositions of these species. All 50 strains of F. graminearum s. str. were of a 15- or 3-acetyl deoxynivalenol type, while 173 (70%) out of 246 strains of F. asiaticum were of a nivalenol type. The possibility of gene flow between the two species was investigated by use of 15 PCR-RFLP markers developed in this study. However, no obvious hybrids were detected from 98 strains examined, including strains collected from regions where both species co-occur.


2009 ◽  
Vol 425 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Sabine Wenzel ◽  
Berta M. Martins ◽  
Paul Rösch ◽  
Birgitta M. Wöhrl

The eukaryotic transcription elongation factor DSIF [DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole) sensitivity-inducing factor] is composed of two subunits, hSpt4 and hSpt5, which are homologous to the yeast factors Spt4 and Spt5. DSIF is involved in regulating the processivity of RNA polymerase II and plays an essential role in transcriptional activation of eukaryotes. At several eukaryotic promoters, DSIF, together with NELF (negative elongation factor), leads to promoter-proximal pausing of RNA polymerase II. In the present paper we describe the crystal structure of hSpt4 in complex with the dimerization region of hSpt5 (amino acids 176–273) at a resolution of 1.55 Å (1 Å=0.1 nm). The heterodimer shows high structural similarity to its homologue from Saccharomyces cerevisiae. Furthermore, hSpt5-NGN is structurally similar to the NTD (N-terminal domain) of the bacterial transcription factor NusG. A homologue for hSpt4 has not yet been found in bacteria. However, the archaeal transcription factor RpoE” appears to be distantly related. Although a comparison of the NusG-NTD of Escherichia coli with hSpt5 revealed a similarity of the three-dimensional structures, interaction of E. coli NusG-NTD with hSpt4 could not be observed by NMR titration experiments. A conserved glutamate residue, which was shown to be crucial for dimerization in yeast, is also involved in the human heterodimer, but is substituted for a glutamine residue in Escherichia coli NusG. However, exchanging the glutamine for glutamate proved not to be sufficient to induce hSpt4 binding.


Sign in / Sign up

Export Citation Format

Share Document