BASF expands chemical catalyst recycling capacity and capability

2021 ◽  
Vol 2021 (9) ◽  
pp. 4
Keyword(s):  
Author(s):  
Masaki Kobayashi ◽  
Hiroki Yamaguchi ◽  
Takeyuki Suzuki ◽  
Yasushi Obora

A simple method for the cross β-alkylation of linear alcohols with benzyl alcohols in the presence of DMF-stabilized iridium nanoparticles was developed. Furthermore, a highly effective catalyst-recycling process was also developed.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3525
Author(s):  
Leslie Trigoura ◽  
Yalan Xing ◽  
Bhanu P. S. Chauhan

In this review, we present an assessment of recent advances in alkyne functionalization reactions, classified according to different classes of recyclable catalysts. In this work, we have incorporated and reviewed the activity and selectivity of recyclable catalytic systems such as polysiloxane-encapsulated novel metal nanoparticle-based catalysts, silica–copper-supported nanocatalysts, graphitic carbon-supported nanocatalysts, metal organic framework (MOF) catalysts, porous organic framework (POP) catalysts, bio-material-supported catalysts, and metal/solvent free recyclable catalysts. In addition, several alkyne functionalization reactions have been elucidated to demonstrate the success and efficiency of recyclable catalysts. In addition, this review also provides the fundamental knowledge required for utilization of green catalysts, which can combine the advantageous features of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis.


2018 ◽  
Vol 16 (1) ◽  
pp. 605-613 ◽  
Author(s):  
Vivek Srivastava

AbstractWe successfully synthesized Pd@MMT clay using a cation exchange process. We characterized all the synthesized Pd@MMT clays using sophisticated analytical techniques before testing them as a heterogeneous catalyst for the Mizoroki - Heck reaction (mono and double). The highest yield of the Mizoroki-Heck reaction product was recovered using thermally stable and highly reactive Pd@ MMT-1 clay catalyst in the functionalized ionic liquid reaction medium. We successfully isolated 2-aryl-vinyl phosphonates (mono-Mizoroki-Heck reaction product) and 2,2-diaryl-vinylphosphonates (double-Mizoroki-Heck reaction product) using aryl halides and dialkyl vinyl phosphonates in higher yields. The low catalyst loading, easy recovery of reaction product and 8 times catalyst recycling are the major highlights of this proposed protocol.


2021 ◽  
Vol 08 ◽  
Author(s):  
Vivek Srivastava

Background: Baylis-Hillman reaction suffers from the requirement of cheap starting materials, easy reaction protocol, possibility to create the chiral center in the reaction product has increased the synthetic efficacy of this reaction, and high catalyst loading, low reaction rate, and poor yield. Objective: The extensive use of various functional or non-functional ionic liquids (ILs) with organocatalyst increases the reaction rate of various organic transformations as a reaction medium and as a support to anchor the catalysts. Methods: In this manuscript, we have demonstrated the synthesis of quinuclidine-supported trimethylamine-based functionalized ionic liquid as a catalyst for the Baylis-Hillman reaction. Results: We obtained the Baylis-Hillman adducts in good, isolated yield, low catalyst loading, short reaction time, broad substrate scope, accessible product, and catalyst recycling. N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide was also successfully synthesized using CATALYST-3 promoted Baylis-Hillman reaction. Conclusion: We successfully isolated the 25 types of Baylis-Hillman adducts using three different quinuclidine-supported ammonium-based ionic liquids such as Et3AmQ][BF4] (CATALYST-1), [Et3AmQ][PF6] (CATALYST-2), and [TMAAmEQ][NTf2](CATALYST-3) as new and efficient catalysts. Tedious and highly active N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide derivative was also synthesized using CATALYST-3 followed by Baylis-Hillman reaction. Generally, all the responses demonstrated higher activity and yielded high competition with various previously reported homogenous and heterogeneous Catalytic systems. Easy catalyst and product recovery followed by six catalysts recycling were the added advantages of the prosed catalytic system.


2018 ◽  
Vol 1 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Zhuohua Sun ◽  
Giovanni Bottari ◽  
Anastasiia Afanasenko ◽  
Marc C. A. Stuart ◽  
Peter J. Deuss ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 33 (49) ◽  
pp. no-no
Author(s):  
Harm P. Dijkstra ◽  
Gerard P. M. Van Klink ◽  
Gerard Van Koten

2021 ◽  
Vol 18 ◽  
Author(s):  
Vivek Srivastava

: In the present manuscript, we easily synthesized three different types of ionic liquid supported 3-quinuclidinone organocatalysts such as [PyAmEQ][BF4] (Py-CATALYST-1), [PyAmEQ][PF6] (Py-CATALYST-2), and [PyAmEQ][NTf2] (Py-CATALYST-3). After performing the careful characterization of the above catalysts with sophisticated analytical techniques, we utilized them as a catalyst to study the passive Morita-Baylis-Hillman reaction. The corresponding Morita-Baylis-Hillman adducts were easily isolated, followed by the simple ether extraction method. Moreover, the above protocol also promoted low catalyst loading, short reaction time, wide substrate scope, easy product, and catalyst recycling. We easily recycled the catalytic system for 5 runs with no noticeable loss in the chemical yield. Additionally, Py-CATALYST-3 was also used to prepare biologically active materials, i.e., N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide derivatives.


Sign in / Sign up

Export Citation Format

Share Document