scholarly journals Clariant & Air Liquide present MegaZonE: Novel catalyst layering technology for enhanced methanol synthesis performance

2022 ◽  
Vol 2022 (1) ◽  
pp. 6
1984 ◽  
Vol 15 (15) ◽  
Author(s):  
Y. TANAKA ◽  
C. KAWAMURA ◽  
A. UENO ◽  
Y. KOTERA ◽  
K. TAKEUCHI ◽  
...  

1983 ◽  
Vol 8 (3) ◽  
pp. 325-333 ◽  
Author(s):  
Yoshinori Tanaka ◽  
Chikara Kawamura ◽  
Akifumi Ueno ◽  
Yoshihide Kotera ◽  
Kazuhiko Takeuchi ◽  
...  

2019 ◽  
Author(s):  
Nirmal Kumar ◽  
Subramanian Nellaiappan ◽  
Ritesh Kumar ◽  
Kirtiman Deo Malviya ◽  
K. G. Pradeep ◽  
...  

<div>Renewable harvesting clean and hydrogen energy using the benefits of novel multicatalytic materials of high entropy alloy (HEA equimolar Cu-Ag-Au-Pt-Pd) from formic acid with minimum energy input has been achieved in the present investigation. The synthesis effect of pristine elements in the HEA drives the electro-oxidation reaction towards non-carbonaceous pathway . The atomistic simulation based on DFT rationalize the distinct lowering of the d-band center for the individual atoms in the HEA as compared to the pristine counterparts. This catalytic activity of the HEA has also been extended to methanol electro-oxidation to show the unique capability of the novel catalyst. The nanostructured HEA, properties using a combination of casting and cry omilling techniques can further be utilized as fuel cell anode in direct formic acid/methanol fuel cells (DFFE).<br></div>


2019 ◽  
Vol 16 (6) ◽  
pp. 913-920 ◽  
Author(s):  
Israel Bonilla-Landa ◽  
Emizael López-Hernández ◽  
Felipe Barrera-Méndez ◽  
Nadia C. Salas ◽  
José L. Olivares-Romero

Background: Hafnium(IV) tetrachloride efficiently catalyzes the protection of a variety of aldehydes and ketones, including benzophenone, acetophenone, and cyclohexanone, to the corresponding dimethyl acetals and 1,3-dioxolanes, under microwave heating. Substrates possessing acid-labile protecting groups (TBDPS and Boc) chemoselectively generated the corresponding acetal/ketal in excellent yields. Aim and Objective: In this study. the selective protection of aldehydes and ketones using a Hafnium(IV) chloride, which is a novel catalyst, under microwave heating was observed. Hence, it is imperative to find suitable conditions to promote the protection reaction in high yields and short reaction times. This study was undertaken not only to find a novel catalyst but also to perform the reaction with substrates bearing acid-labile protecting groups, and study the more challenging ketones as benzophenone. Materials and Methods: Using a microwave synthesis reactor Monowave 400 of Anton Paar, the protection reaction was performed on a raging temperature of 100°C ±1, a pressure of 2.9 bar, and an electric power of 50 W. More than 40 substrates have been screened and protected, not only the aldehydes were protected in high yields but also the more challenging ketones such as benzophenone were protected. All the products were purified by simple flash column chromatography, using silica gel and hexanes/ethyl acetate (90:10) as eluents. Finally, the protected substrates were characterized by NMR 1H, 13C and APCI-HRMS-QTOF. Results: Preliminary screening allowed us to find that 5 mol % of the catalyst is enough to furnish the protected aldehyde or ketone in up to 99% yield. Also it was found that substrates with a variety of substitutions on the aromatic ring (aldehyde or ketone), that include electron-withdrawing and electrondonating group, can be protected using this methodology in high yields. The more challenging cyclic ketones were also protected in up to 86% yield. It was found that trimethyl orthoformate is a very good additive to obtain the protected acetophenone. Finally, the protection of aldehydes with sensitive functional groups was performed. Indeed, it was found that substrates bearing acid labile groups such as Boc and TBDPS, chemoselectively generated the corresponding acetal/ketal compound while keeping the protective groups intact in up to 73% yield. Conclusion: Hafnium(IV) chloride as a catalyst provides a simple, highly efficient, and general chemoselective methodology for the protection of a variety of structurally diverse aldehydes and ketones. The major advantages offered by this method are: high yields, low catalyst loading, air-stability, and non-toxicity.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Thaylan P Araújo ◽  
Adrian H Hergesell ◽  
Dario Faust-Akl ◽  
Simon Büchele ◽  
Joseph A Stewart ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hossein Abdollahi-Basir ◽  
Boshra Mirhosseini-Eshkevari ◽  
Farzad Zamani ◽  
Mohammad Ali Ghasemzadeh

AbstractA one-pot three component reaction of benzaldehydes, 1H-tetrazole-5-amine, and 3-cyanoacetyl indole in the presence of a new hexamethylenetetramine-based ionic liquid/MIL-101(Cr) metal–organic framework as a recyclable catalyst was explored. This novel catalyst, which was fully characterized by XRD, FE-SEM, EDX, FT-IR, TGA, BET, and TEM exhibited outstanding catalytic activity for the preparation of a range of pharmaceutically important tetrazolo[1,5-a]pyrimidine-6-carbonitriles with good to excellent yields in short reaction time.


Sign in / Sign up

Export Citation Format

Share Document