Occurrence of ochratoxin A in raw ham muscle, salami and dry-cured ham from pigs fed with contaminated diet

2010 ◽  
Vol 120 (4) ◽  
pp. 978-983 ◽  
Author(s):  
Chiara Dall’Asta ◽  
Gianni Galaverna ◽  
Terenzio Bertuzzi ◽  
Alessandra Moseriti ◽  
Amedeo Pietri ◽  
...  
Keyword(s):  
2007 ◽  
Vol 70 (4) ◽  
pp. 975-980 ◽  
Author(s):  
PAOLA BATTILANI ◽  
AMEDEO PIETRI ◽  
PAOLA GIORNI ◽  
SILVIA FORMENTI ◽  
TERENZIO BERTUZZI ◽  
...  

Seven ham manufacturing plants were sampled for 1 year to assess the mycoflora present in the air and on hams, with special attention given to potential mycotoxin producers. Temperature and relative humidity were recorded in the ripening rooms. Maturing rooms held hams from 2 to 3 through 6 to 7 ripening months, and aging rooms held hams for the following 6 to 7 months, until the 14-month ripening point, when they were ready for the market. Mean temperatures and relative humidities registered during the study were 14.9°C and 62.4%, respectively, in maturing rooms and 16.3°C and 57.6% in aging rooms. Aspergilli and penicillia, potential mycotoxin producers, were isolated in all the plants from the air and the ham. Aspergilli represented 5% of the isolates, while penicillia were largely dominant, with Penicillium nalgiovense being the most represented species (around 60% of the penicillia), followed by Penicillium nordicum, with 10 and 26% of the penicillia isolated, respectively, from the air or the ham. Ochratoxin A production ability, checked in vitro at 25°C, was observed in 50% of the P. nordicum isolates obtained both from the air and the ham. Air and ham surface contamination by penicillia was greater in the ripening rooms, where higher temperatures were registered. A certain correlation was also observed between air and ham surface contamination. On the basis of this study, P. nordicum, the ochratoxin A producer that is notable on proteinaceous substrates, is normally present in ham manufacturing plants in Italy, even though not a dominant species. Further studies are necessary to clarify and ensure if dry-curing conditions minimize the potential risk of ochratoxin A formation in the product.


2020 ◽  
Vol 8 (10) ◽  
pp. 1623
Author(s):  
Lucilla Iacumin ◽  
Martina Arnoldi ◽  
Giuseppe Comi

Recently, specific dry-cured hams have started to be produced in San Daniele and Parma areas. The ingredients are similar to protected denomination of origin (PDO) produced in San Daniele or Parma areas, and include pork leg, coming from pigs bred in the Italian peninsula, salt and spices. However, these specific new products cannot be marked as a PDO, either San Daniele or Parma dry cured ham, because they are seasoned for 6 months, and the mark PDO is given only to products seasoned over 13 months. Consequently, these products are called short-seasoned dry-cured ham (SSDCH) and are not branded PDO. During their seasoning period, particularly from the first drying until the end of the seasoning period, many molds, including Eurotium spp. and Penicillium spp., can grow on the surface and work together with other molds and tissue enzymes to produce a unique aroma. Both of these strains typically predominate over other molds. However, molds producing ochratoxins, such as Aspergillus ochraceus and Penicillium nordicum, can simultaneously grow and produce ochratoxin A (OTA). Consequently, these dry-cured hams may represent a potential health risk for consumers. Recently, Aspergillus westerdijkiae has been isolated from SSDCHs, which could represent a potential problem for consumers. Therefore, the aim of this study was to inhibit A. westerdijkiae using Debaryomyces hansenii or Lactobacillus buchneri or a mix of both microorganisms. Six D. hansenii and six L. buchneri strains were tested in vitro for their ability to inhibit A. westerdijkiae. The strains D. hansenii (DIAL)1 and L. buchneri (Lb)4 demonstrated the highest inhibitory activity and were selected for in situ tests. The strains were inoculated or co-inoculated on fresh pork legs for SSDCH production with OTA-producing A. westerdijkiae prior to the first drying and seasoning. At the end of seasoning (six months), OTA was not detected in the SSDCH treated with both microorganisms and their combination. Because both strains did not adversely affect the SSDCH odor or flavor, the combination of these strains are proposed for use as starters to inhibit OTA-producing A. westerdijkiae.


2017 ◽  
Vol 68 ◽  
pp. 104-111 ◽  
Author(s):  
Victoria Bernáldez ◽  
Juan J. Córdoba ◽  
María J. Andrade ◽  
Alberto Alía ◽  
Alicia Rodríguez

Toxins ◽  
2012 ◽  
Vol 4 (2) ◽  
pp. 68-82 ◽  
Author(s):  
Roberta Virgili ◽  
Nicoletta Simoncini ◽  
Tania Toscani ◽  
Marco Camardo Leggieri ◽  
Silvia Formenti ◽  
...  

2018 ◽  
Vol 272 ◽  
pp. 22-28 ◽  
Author(s):  
Josué Delgado ◽  
Lucía da Cruz Cabral ◽  
Mar Rodríguez ◽  
Alicia Rodríguez

2011 ◽  
Vol 126 (1) ◽  
pp. 301 ◽  
Author(s):  
Chiara Dall’Asta ◽  
Gianni Galaverna ◽  
Terenzio Bertuzzi ◽  
Alessandra Moseriti ◽  
Amedeo Pietri ◽  
...  

2005 ◽  
Vol 68 (7) ◽  
pp. 1516-1520 ◽  
Author(s):  
J. D. BAILLY ◽  
C. TABUC ◽  
A. QUÉRIN ◽  
P. GUERRE

Toxinogenic fungal species can be isolated from dry cured meat products, raising the problem of the direct contamination of these foods by mycotoxins known to be carcinogenic or potent carcinogens. Because the contamination of a food by mycotoxins can be considered a balance between production and degradation, the stability of mycotoxins on dry cured meat was also investigated. This study focused on patulin, ochratoxin A, citrinin, and cyclopiazonic acid that can be produced by fungal species previously isolated from dry cured meat products sold on the French market. We demonstrated that neither patulin nor ochratoxin A was produced on dry meat by toxigenic strains, whereas relatively high amounts of citrinin and cyclopiazonic acid were found after a 16-day incubation period at 20°C (87 and 50 mg/kg, respectively). After direct contamination, the initial content of patulin rapidly decreased to become undetectable after only 6 h of incubation at 20°C. For both citrinin and ochratoxin A, the kinetics of decrease at 20°C was less rapid, and the two toxins presented half-lives of 6 and 120 h, respectively. By contrast, more than 80% of the initial contamination in cyclopiazonic acid was still found on ham after a 192-h incubation period. Toxin stability was not affected by storage at 4°C. These results suggest that growth of toxigenic strains of Penicillium has to be avoided on dry meat products.


Sign in / Sign up

Export Citation Format

Share Document