Structure and composition of model cheeses influence sodium NMR mobility, kinetics of sodium release and sodium partition coefficients

2013 ◽  
Vol 136 (2) ◽  
pp. 1070-1077 ◽  
Author(s):  
Lauriane Boisard ◽  
Isabelle Andriot ◽  
Christine Arnould ◽  
Christine Achilleos ◽  
Christian Salles ◽  
...  
1985 ◽  
Vol 50 (8) ◽  
pp. 1642-1647 ◽  
Author(s):  
Štefan Baláž ◽  
Anton Kuchár ◽  
Ernest Šturdík ◽  
Michal Rosenberg ◽  
Ladislav Štibrányi ◽  
...  

The distribution kinetics of 35 2-furylethylene derivatives in two-phase system 1-octanol-water was investigated. The transport rate parameters in direction water-1-octanol (l1) and backwards (l2) are partition coefficient P = l1/l2 dependent according to equations l1 = logP - log(βP + 1) + const., l2 = -log(βP + 1) + const., const. = -5.600, β = 0.261. Importance of this finding for assesment of distribution of compounds under investigation in biosystems and also the suitability of the presented method for determination of partition coefficients are discussed.


1933 ◽  
Vol 16 (3) ◽  
pp. 529-557 ◽  
Author(s):  
W. J. V. Osterhout

An organic potassium salt, KG, passes from an aqueous phase, A, through a non-aqueous layer, B, into a watery solution, C. In C it reacts with CO2 to form KHCO3. The ionic activity product (K) (G) in C is thus kept at such a low level that KG continues to diffuse into C after the concentration of potassium becomes greater in C than in A. Hence potassium accumulates in C, the osmotic pressure rises, and water goes in. A steady state is eventually reached in which potassium and water enter C in a constant ratio. The rate of entrance of potassium (with no water penetrating into C) may fall off in a manner approximately exponential. But water enters and may produce an exponential decrease in concentration. This suggests that the kinetics may be treated like that of two consecutive monomolecular reactions. Calculations made on this basis agree very well with the observed values. The rate of penetration appears to be proportional to the concentration gradient of KG in the non-aqueous layer and in consequence depends upon the partition coefficients which determine this gradient. Exchange of ions (passing as such through the non-aqueous layer) does not seem to play an important rôle in the entrance of potassium. The kinetics of the model may be similar to that of living cells.


1938 ◽  
Vol 22 (2) ◽  
pp. 147-163 ◽  
Author(s):  
A. G. Jacques

When Valonia cells are impaled on capillaries, it is in some ways equivalent to removing the comparatively inelastic cellulose wall. Under these conditions sap can migrate into a free space and it is found that on the average the rate of increase of volume of the sap is 15 times what it is in intact cells kept under comparable conditions. The rate of increase of volume is a little faster during the first few hours of the experiment, but it soon becomes approximately linear and remains so as long as the experiment is continued. The slightly faster rate at first may mean that the osmotic pressure of the sap is approaching that of the sea water (in the intact cell the sap osmotic pressure is always slightly above that of the sea water). This might result from a more rapid entrance of water than of electrolyte, as would be expected when the restriction of the cellulose wall was removed. During the linear part of the curve the osmotic concentration and the composition of the sap suffer no change, so that entrance of electrolyte must be 15 times as fast in the impaled cells as it is in the intact cells. The explanation which best accords with the facts is that in the intact cell the entrance of electrolyte tends to increase the osmotic pressure. As a consequence the protoplasm is partially dehydrated temporarily and it cannot take up more water until the cellulose wall grows so that it can enclose more volume. The dehydration of the protoplasm may have the effect of making the non-aqueous protoplasm less permeable to electrolytes by reducing the diffusion and partition coefficients on which the rate of entrance depends. In this way the cell is protected against great fluctuations in the osmotic concentration of the sap.


2017 ◽  
Vol 127 (5) ◽  
pp. 800-812 ◽  
Author(s):  
Moritz Kretzschmar ◽  
Alf Kozian ◽  
James E. Baumgardner ◽  
Joao Batista Borges ◽  
Göran Hedenstierna ◽  
...  

Abstract Background Increasing numbers of patients with obstructive lung diseases need anesthesia for surgery. These conditions are associated with pulmonary ventilation/perfusion (VA/Q) mismatch affecting kinetics of volatile anesthetics. Pure shunt might delay uptake of less soluble anesthetic agents but other forms of VA/Q scatter have not yet been examined. Volatile anesthetics with higher blood solubility would be less affected by VA/Q mismatch. We therefore compared uptake and elimination of higher soluble isoflurane and less soluble desflurane in a piglet model. Methods Juvenile piglets (26.7 ± 1.5 kg) received either isoflurane (n = 7) or desflurane (n = 7). Arterial and mixed venous blood samples were obtained during wash-in and wash-out of volatile anesthetics before and during bronchoconstriction by methacholine inhalation (100 μg/ml). Total uptake and elimination were calculated based on partial pressure measurements by micropore membrane inlet mass spectrometry and literature-derived partition coefficients and assumed end-expired to arterial gradients to be negligible. VA/Q distribution was assessed by the multiple inert gas elimination technique. Results Before methacholine inhalation, isoflurane arterial partial pressures reached 90% of final plateau within 16 min and decreased to 10% after 28 min. By methacholine nebulization, arterial uptake and elimination delayed to 35 and 44 min. Desflurane needed 4 min during wash-in and 6 min during wash-out, but with bronchoconstriction 90% of both uptake and elimination was reached within 15 min. Conclusions Inhaled methacholine induced bronchoconstriction and inhomogeneous VA/Q distribution. Solubility of inhalational anesthetics significantly influenced pharmacokinetics: higher soluble isoflurane is less affected than fairly insoluble desflurane, indicating different uptake and elimination during bronchoconstriction.


1934 ◽  
Vol 17 (3) ◽  
pp. 469-480 ◽  
Author(s):  
W. J. V. Osterhout ◽  
S. E. Kamerling ◽  
W. M. Stanley

In some living cells the order of penetration of certain cations corresponds to that of their mobilities in water. This has led to the idea that electrolytes pass chiefly as ions through the protoplasmic surface in which the order of ionic mobilities is supposed to correspond to that found in water. If this correspondence could be demonstrated it would not prove that electrolytes pass chiefly as ions through the protoplasmic surface for such a correspondence could exist if the movement were mostly in molecular form. This is clearly shown in the models here described. In these the protoplasmic surface is represented by a non-aqueous layer interposed between two aqueous phases, one representing the external solution, the other the cell sap. The order of penetration through the non-aqueous layer is Cs > Rb > K > Na > Li. This will be recognized as the order of ionic mobilities in water. Nevertheless the movement is mostly in molecular form in the nonaqueous layer (which is used in the model to represent the protoplasmic surface) since the salts are very weak electrolytes in this layer. The chief reason for this order of penetration lies in the fact that the partition coefficients exhibit the same order, that of cesium being greatest and that of lithium smallest. The partition coefficients largely control the rate of entrance since they determine the concentration gradient in the non-aqueous layer which in turn controls the process of penetration. The relative molecular mobilities (diffusion constants) in the non-aqueous layer do not differ greatly. The ionic mobilities are not known (except for K+ and Na+) but they are of negligible importance, since the movement in the non-aqueous layer is largely in molecular form. They may follow the same order as in water, in accordance with Walden's rule. Ammonium appears to enter faster than its partition coefficient would lead us to expect, which may be due to rapid penetration of NH3. This recalls the apparent rapid penetration of ammonium in living cells which has also been explained as due to the rapid penetration of NH3. Both observation and calculation indicate that the rate of penetration is not directly proportional to the partition coefficient but increases somewhat less rapidly. Many of these considerations doubtless apply to living cells.


1934 ◽  
Vol 17 (4) ◽  
pp. 507-516 ◽  
Author(s):  
W. J. V. Osterhout ◽  
S. E. Kamerling

A model is described which throws light on the mechanism of accumulation. In the model used an external aqueous phase A is separated by a non-aqueous phase B (representing the protoplasm) from the artificial sap in C. A contains KOH and C contains HCl: they tend to mix by passing through the non-aqueous layer but much more KOH moves so that most of the KCl is formed in C, where the concentration of potassium becomes much greater than in A. This accumulation is only temporary for as the system approaches equilibrium the composition of A approaches identity with that of C, since all the substances present can pass through the non-aqueous layer. Such an approach to equilibrium may be compared to the death of the cell as the result of which accumulation disappears. During the earlier stages of the experiment potassium tends to go in as KOH and at the same time to go out as KCl. These opposing tendencies do not balance until the concentration of potassium inside becomes much greater than outside (hence potassium accumulates). The reason is that KCl, although its driving force be great, moves very slowly in B because its partition coefficient is low and in consequence its concentration gradient in B is small. This illustrates the importance of partition coefficients for penetration in models and in living cells. It also indicates that accumulation depends on the fact that permeability is greater for the ingoing compound of the accumulating substance than for the outgoing compound. Other things being equal, accumulation is increased by maintaining a low pH in C. Hence we may infer that anything which checks the production of acid in the living cell may be expected to check accumulation and growth. This model recalls the situation in Valonia and in most living cells where potassium accumulates as KCl, perhaps because it enters as KOH and forms KA in the sap (where A is an organic anion). In some plants potassium accumulates as KA but when HCl exists in the external solution it will tend to enter and displace the weaker acid HA (if this be carbonic it can readily escape): hence potassium may accumulate to a greater or less extent as KCl. Injury of the cell may produce a twofold effect, (1) increase of permeability, (2) lessened accumulation. The total amount of electrolyte taken up in a given time will be influenced by these factors and may be greater than normal in the injured cell or less, depending somewhat on the length of the interval of time chosen.


Author(s):  
J. F. DeNatale ◽  
D. G. Howitt

The electron irradiation of silicate glasses containing metal cations produces various types of phase separation and decomposition which includes oxygen bubble formation at intermediate temperatures figure I. The kinetics of bubble formation are too rapid to be accounted for by oxygen diffusion but the behavior is consistent with a cation diffusion mechanism if the amount of oxygen in the bubble is not significantly different from that in the same volume of silicate glass. The formation of oxygen bubbles is often accompanied by precipitation of crystalline phases and/or amorphous phase decomposition in the regions between the bubbles and the detection of differences in oxygen concentration between the bubble and matrix by electron energy loss spectroscopy cannot be discerned (figure 2) even when the bubble occupies the majority of the foil depth.The oxygen bubbles are stable, even in the thin foils, months after irradiation and if van der Waals behavior of the interior gas is assumed an oxygen pressure of about 4000 atmospheres must be sustained for a 100 bubble if the surface tension with the glass matrix is to balance against it at intermediate temperatures.


Sign in / Sign up

Export Citation Format

Share Document