Low-molecular-weight glutenin subunit LMW-N13 improves dough quality of transgenic wheat

2020 ◽  
Vol 327 ◽  
pp. 127048 ◽  
Author(s):  
Xuye Du ◽  
Jialian Wei ◽  
Xi Luo ◽  
Zhiguo Liu ◽  
Yuqing Qian ◽  
...  
2019 ◽  
Vol 17 (04) ◽  
pp. 379-381
Author(s):  
Xuye Du ◽  
Biya Xia ◽  
Fang He ◽  
Mingjian Ren

AbstractHigh-molecular-weight glutenin subunit (HMW-GS) of endosperm is mainly correlated with dough quality of bread wheat. In wheat cultivars, the HMW-GS genes with good processing quality are limited. However, there are an amount of excellent HMW-GS genes presenting in wheat-related species. In this work, two novel HMW-GS genes located on 1 M chromosome from Aegilops comosa have been cloned, designated as 1Mx2.1 and 1My12.1, respectively. The molecular structure of 1Mx2.1 and 1My12.1 showed high similarity with the published HMW-GS, but containing unique structures. 1Mx2.1 contained an extra cysteine residue in the repetitive domain, and 1My12.1 lost the conservative cysteine residue in the C-terminal domain. In vitro mixing test has indicated that 1Mx2.1 contributes excellent dough quality. The Ae. comosa can be used as an important genetic resource for wheat quality improvement.


2021 ◽  
Vol 22 (14) ◽  
pp. 7709
Author(s):  
Kyoungwon Cho ◽  
You-Ran Jang ◽  
Sun-Hyung Lim ◽  
Susan B. Altenbach ◽  
Yong Q. Gu ◽  
...  

The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography–tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the ‘Aroona’ cultivar and 12 ‘Aroona’ near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for ‘Aroona’ and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in ‘Aroona’ and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement.


2006 ◽  
Vol 4 (2) ◽  
pp. 134-143 ◽  
Author(s):  
Faris Hailu ◽  
Eva Johansson ◽  
Arnulf Merker ◽  
Getachew Belay ◽  
Harjit-Singh ◽  
...  

A collection of 120 Ethiopian tetraploid wheat accessions was analysed for high-molecular weight (HMW) glutenin subunit, low-molecular weight (LMW) glutenin subunit and omega gliadin composition by SDS–PAGE. For the HMW glutenin subunits, a new allelic variant, 2****, was detected which has not been previously described at the Glu-A1 locus. A high proportion of Glu-A1x banding pattern was observed in durum wheat. For the Glu-B1 locus four different banding patterns were detected. Among those HMW glutenin subunits, 7+8 were the most common, while subunits 14+15 and 6+8 were found to be rare. A high degree of variation was evident for the LMW glutenin subunits and D-zone omega gliadins. The association of the composition of the gluten with quality has been discussed. This wide variation can be used in improving the quality of wheat and to widen its genetic base.


2018 ◽  
Vol 69 (9) ◽  
pp. 873
Author(s):  
Xin Ma ◽  
Xuye Du ◽  
Cunyao Bo ◽  
Hongwei Wang ◽  
Anfei Li ◽  
...  

High-molecular-weight glutenin subunits (HMW-GS) in bread wheat are major determinants of dough viscoelastic properties and the end-use quality of wheat flour. Cysteine residues, which form intermolecular disulphide bonds in HMW-GS, could improve the strength of gluten. To our knowledge, the number and position of cysteine residues in HMW-GS are conserved between wheat (Triticum aestivum) and Aegilops markgrafii. In the present study, we modified a gene (1Cx1.1) from Ae. markgrafii for an HMW-GS that possessed the typical structure and conserved number of cysteines. Site-directed mutagenesis was carried out in 1Cx1.1 to investigate how the position of cysteine residues in HMW-GS affects the mixing properties of dough. Six HMW-GS containing an extra cysteine residue were expressed in Escherichia coli, and the proteins were purified at sufficient scale for incorporation into flour to test dough quality. There were large differences in dough property among samples containing different modified subunits. Cysteine substituting in the N-terminal or repetitive-domain of HMW-GS could significantly improve dough quality. The results showed that the strategy was useful for providing genetic resources for gene engineering, and hence could be valuable for improving the processing quality of wheat.


2008 ◽  
Vol 149 (1) ◽  
pp. 412-423 ◽  
Author(s):  
Alessio Lombardi ◽  
Alessandra Barbante ◽  
Pietro Della Cristina ◽  
Daniele Rosiello ◽  
Chiara Lara Castellazzi ◽  
...  

2005 ◽  
Vol 42 (1) ◽  
pp. 15-23 ◽  
Author(s):  
M. Rakszegi ◽  
F. Békés ◽  
L. Láng ◽  
L. Tamás ◽  
P.R. Shewry ◽  
...  

2011 ◽  
Vol 62 (9) ◽  
pp. 746 ◽  
Author(s):  
H. Jin ◽  
J. Yan ◽  
R. J. Peña ◽  
X. C. Xia ◽  
A. Morgounov ◽  
...  

The composition and quantity of high- and low-molecular-weight glutenin subunits (HMW-GS and LMW-GS) plays an important role in determining the end-use quality of wheat products. In the present study, 718 wheat cultivars and advanced lines from 20 countries were characterised for the HMW-GS and LMW-GS with allele-specific molecular markers. For the Glu-A1 locus, 311 cultivars (43.3%) had the subunit Ax2*, which predominated in cultivars from Canada (83.3%), Romania (91.7%), Russia (72.2%) and USA (72.2%). At Glu-B1 locus, 197 cultivars (27.4%) contained the By8 subunit and its frequency was higher in Japanese (60.0%) and Romanian (62.5%) genotypes than in those from other countries; 264 cultivars (36.8%) carried the By9 subunit, mostly existing in the cultivars from Austria (100.0%), Russia (72.2%), and Serbia (72.7%); the By16 subunit was present in 44 cultivars (6.1%), with a relatively high percentage in Chile (19.5%), whereas almost no cultivars from other countries had this subunit; the frequency of Bx7OE was 3.1%, and was found only in cultivars from Argentina (12.1%), Australia (4.1%), Canada (25.0%), Iran (20.0%), and Japan (30.0%). There were 446 genotypes (62.1%) with the subunit Dx5 at the Glu-D1 locus; high frequencies of Dx5 occurred in cultivars from Hungary (90.0%), Romania (95.8%), and Ukraine (92.3%). At the Glu-A3 locus, the frequencies of Glu-A3a, b, c, d, e, f and g were 2.9, 6.8, 53.2, 12.8, 7.7, 13.8, and 2.4%, respectively. Glu-A3a was detected only in the cultivars from Bulgaria (13.3%), China (12.2%), Germany (2.7%), Iran (6.7%), Mexico (14.3%), Turkey (4.7%), and USA (5.1%); the high frequencies of superior alleles Glu-A3b and d were found in cultivars from Australia (39.7%) and France (24.5%); Glu-A3c was widely distributed in cultivars from all the countries; the high frequencies of Glu-A3e, f and g were detected in cultivars from Argentina (33.3%), Canada (29.2%), and Hungary (20.0%). At the Glu-B3 locus, Glu-B3a, b, c, d, e, f, g, h and i were present in frequencies of 0.4, 22.3, 0.3, 2.8, 1.9, 3.9, 27.2, 18.8, and 7.1%, respectively. Glu-B3a was detected only in cultivars from Argentina (3.0%) and Ukraine (15.4%) cultivars; high frequencies of Glu-B3b and d were found in the cultivars from Romania (62.5%) and Mexico (14.3%); Glu-B3c was detected only in Romanian (8.3%) genotypes; frequencies of e, f, h and i were high in cultivars from Austria (40.0%), China (14.3%), USA (43.0%), and Argentina (33.3%); Glu-B3g was mostly detected in the cultivars from Germany (69.3%), Norway (77.3%), and Serbia (63.6%). The frequency of the 1B·1R translocation was 13.4%; it occurred in cultivars from all the countries except Australia, Austria, Norway, and Serbia. The functional markers applied in this study, in agreement with the results of sodium-dodecylsulfate–polyacrylamide gel electrophoresis, were accurate and stable, and can be used effectively in wheat quality breeding.


Sign in / Sign up

Export Citation Format

Share Document