Detection of Fusarium head blight contamination in wheat kernels by multivariate imaging

Food Control ◽  
2015 ◽  
Vol 54 ◽  
pp. 250-258 ◽  
Author(s):  
B. Jaillais ◽  
P. Roumet ◽  
L. Pinson-Gadais ◽  
D. Bertrand
2010 ◽  
Vol 90 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Dario Ivic ◽  
Ana-Marija Domijan ◽  
Maja Peraica ◽  
Bogdan Cvjetkovic

In Croatia, a trial was conducted to determine the presence of theFusariummycotoxins fumonisin B1and zearalenone in wheat kernels and to evaluate the efficacy of nine fungicides on Fusarium head blight severity as well as fumonisin B1and zearalenone accumulation in wheat grain. Fumonisin B1and zearalenone were detected in all grain samples in mean concentrations ranging from 182.0 to 446.6 µg kg-1(fumonisin B1) and from 2.59 to 5.33 µg kg-1(zearalenone). No significant differences were found among fumonisin B1and zearalenone content in wheat grain for the different fungicide treatments. No correlation was revealed between Fusarium head blight severity and fumonisin B1or zearalenone content in wheat grain, nor between fungicide efficacy and fumonisin B1or zearalenone content in wheat grain. Under conditions of high disease pressure, efficacy of the fungicides was between 85.7% (tebuconazole + triadimefon) and 72.1% (carbendazim).


2015 ◽  
Vol 131 ◽  
pp. 65-76 ◽  
Author(s):  
Jayme G.A. Barbedo ◽  
Casiane S. Tibola ◽  
José M.C. Fernandes

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 353
Author(s):  
Rong Wang ◽  
Chen Hua ◽  
Yi Hu ◽  
Lei Li ◽  
Zhengxi Sun ◽  
...  

Fusarium head blight (FHB) causes wheat yield loss and mycotoxin (deoxynivalenol, DON) accumulation in wheat kernel. Developing wheat cultivars with overall resistance to both FHB spread within a spike and DON accumulation in kernels is crucial for ensuring food security and food safety. Here, two relatively novel inoculation methods, bilateral floret inoculation (BFI) and basal rachis internode injection (BRII), were simultaneously employed to evaluate disease severity and DON content in kernels in a segregating population of recombinant inbred lines (RILs) developed from Ning 7840 (carrying Fhb1) and Clark (without Fhb1). Under both inoculation methods, four contrasting combinations of disease severity and DON content were identified: high severity/high DON (HSHD), high severity/low DON (HSLD), low severity/high DON (LSHD) and low severity/low DON (LSLD). Unexpectedly, the BRII method clearly indicated that disease severity was not necessarily relevant to DON concentration. The effects of Fhb1 on disease severity, and on DON concentrations, agreed very well across the two methods. Several lines carrying Fhb1 showed extremely higher severity and (or) DON content under both inoculation methods. The “Mahalanobis distance” (MD) method was used to rate overall resistance of a line by inclusion of both disease severity and DON content over both methods to select LSLD lines.


2020 ◽  
Vol 9 (1) ◽  
pp. 79
Author(s):  
Elias Alisaac ◽  
Anna Rathgeb ◽  
Petr Karlovsky ◽  
Anne-Katrin Mahlein

Most studies of Fusarium head blight (FHB) focused on wheat infection at anthesis. Less is known about infections at later stages. In this study, the effect of infection timing on the development of FHB and the distribution of fungal biomass and deoxynivalenol (DON) along wheat spikes was investigated. Under greenhouse conditions, two wheat varieties were point-inoculated with Fusarium graminearum starting from anthesis until 25 days after anthesis. The fungus and fungal DNA were isolated from the centers and the bases of all the spikes but not from the tips for all inoculation times and both varieties. In each variety, the amount of fungal DNA and the content of DON and deoxynivalenol-3-glucoside (DON-3-G) were higher in the center than in the base for all inoculation times. A positive correlation was found between the content of fungal DNA and DON in the centers as well as the bases of both varieties. This study showed that F. graminearum grows downward within infected wheat spikes and that the accumulation of DON is largely confined to the colonized tissue. Moreover, F. graminearum was able to infect wheat kernels and cause contamination with mycotoxins even when inoculated 25 days after anthesis.


2015 ◽  
Vol 105 (2) ◽  
pp. 246-254 ◽  
Author(s):  
Emerson M. Del Ponte ◽  
Piérri Spolti ◽  
Todd J. Ward ◽  
Larissa B. Gomes ◽  
Camila P. Nicolli ◽  
...  

A multiyear survey of >200 wheat fields in Paraná (PR) and Rio Grande do Sul (RS) states was conducted to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in the southern Brazilian wheat agroecosystem. Five species and three trichothecene genotypes were found among 671 FGSC isolates from Fusarium head blight (FHB)-infected wheat heads: F. graminearum (83%) of the 15-acetyldeoxynivalenol (15-ADON) genotype, F. meridionale (12.8%) and F. asiaticum (0.4%) of the nivalenol (NIV) genotype, and F. cortaderiae (2.5%) and F. austroamericanum (0.9%) with either the NIV or the 3-ADON genotype. Regional differences in FGSC composition were observed, with F. meridionale and the NIV type being significantly (P < 0.001) more prevalent in PR (>28%) than in RS (≤9%). Within RS, F. graminearum was overrepresented in fields below 600 m in elevation and in fields with higher levels of FHB incidence (P < 0.05). Species composition was not significantly influenced by previous crop or the stage of grain development at sampling. Habitat-specific differences in FGSC composition were evaluated in three fields by characterizing a total of 189 isolates collected from corn stubble, air above the wheat canopy, and symptomatic wheat kernels. Significant differences in FGSC composition were observed among these habitats (P < 0.001). Most strikingly, F. meridionale and F. cortaderiae of the NIV genotype accounted for the vast majority (>96%) of isolates from corn stubble, whereas F. graminearum with the 15-ADON genotype was dominant (>84%) among isolates from diseased wheat kernels. Potential differences in pathogenic fitness on wheat were also suggested by a greenhouse competitiveness assay in which F. graminearum was recovered at much higher frequency (>90%) than F. meridionale from four wheat varieties inoculated with an equal mixture of F. graminearum and F. meridionale isolates. Taken together, the data presented here suggest that FGSC composition and, consequently, the trichothecene contamination in wheat grown in southern Brazil is influenced by host adaptation and pathogenic fitness. Evidence that F. meridionale and F. cortaderiae with the NIV genotype are regionally significant contributors to FHB may have significant implications for food safety and the economics of cereal production.


2020 ◽  
Vol 12 (9) ◽  
pp. 227
Author(s):  
Erlei Melo Reis ◽  
Mateus Zanatta ◽  
Andrea Camargo Reis

In field experiment carried out in the 2018 growing season we tried to show the inverse relation between the efficacy of fusarium head blight (FHB) chemical control and the deoxynivalenol (DON) concentration in harvested kernels. The wheat cultivar Tbio Mestre was established under no-till in soybean residues and in winter rotation with black oats. The leaf rust and yellow spot control was performed during the vegetative stage by spraying the whole experimental area with three applications of epoxiconazole + krezoxim methyl (0.7 L/ha). The most potent fungicides metconazole + pyraclostrobin (1.0 L/ha) + mancozeb (2.0 kg/ha), prothioconazole + trifloxystrobin (0.4 L/ha) and pydiflumetofen (1.0 L/ha) were compared to control FHB. Disease incidence in spikes, incidence in spikelets, or spikes severity, grain weight and yield were evaluated. DON concentration was. Using the most efficient technology available for FHB control, the hypothesis of the inverse relationship between disease intensity occurring naturally in spikes, and deoxinivalenol (DON) concentration in the harvested grains was confirmed. DON concentration in unsprayed grains was 3,675 and in the best treatments 821 to 1,067 ppb.


Sign in / Sign up

Export Citation Format

Share Document