scholarly journals Fumonisin B1 and zearalenone contamination of wheat in Croatia and influence of fungicide treatments

2010 ◽  
Vol 90 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Dario Ivic ◽  
Ana-Marija Domijan ◽  
Maja Peraica ◽  
Bogdan Cvjetkovic

In Croatia, a trial was conducted to determine the presence of theFusariummycotoxins fumonisin B1and zearalenone in wheat kernels and to evaluate the efficacy of nine fungicides on Fusarium head blight severity as well as fumonisin B1and zearalenone accumulation in wheat grain. Fumonisin B1and zearalenone were detected in all grain samples in mean concentrations ranging from 182.0 to 446.6 µg kg-1(fumonisin B1) and from 2.59 to 5.33 µg kg-1(zearalenone). No significant differences were found among fumonisin B1and zearalenone content in wheat grain for the different fungicide treatments. No correlation was revealed between Fusarium head blight severity and fumonisin B1or zearalenone content in wheat grain, nor between fungicide efficacy and fumonisin B1or zearalenone content in wheat grain. Under conditions of high disease pressure, efficacy of the fungicides was between 85.7% (tebuconazole + triadimefon) and 72.1% (carbendazim).

Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 554-560 ◽  
Author(s):  
Stephen N. Wegulo ◽  
William W. Bockus ◽  
John Hernandez Nopsa ◽  
Erick D. De Wolf ◽  
Kent M. Eskridge ◽  
...  

Fusarium head blight (FHB) or scab, incited by Fusarium graminearum, can cause significant economic losses in small grain production. Five field experiments were conducted from 2007 to 2009 to determine the effects on FHB and the associated mycotoxin deoxynivalenol (DON) of integrating winter wheat cultivar resistance and fungicide application. Other variables measured were yield and the percentage of Fusarium-damaged kernels (FDK). The fungicides prothioconazole + tebuconazole (formulated as Prosaro 421 SC) were applied at the rate of 0.475 liters/ha, or not applied, to three cultivars (experiments 1 to 3) or six cultivars (experiments 4 and 5) differing in their levels of resistance to FHB and DON accumulation. The effect of cultivar on FHB index was highly significant (P < 0.0001) in all five experiments. Under the highest FHB intensity and no fungicide application, the moderately resistant cultivars Harry, Heyne, Roane, and Truman had less severe FHB than the susceptible cultivars 2137, Jagalene, Overley, and Tomahawk (indices of 30 to 46% and 78 to 99%, respectively). Percent fungicide efficacy in reducing index and DON was greater in moderately resistant than in susceptible cultivars. Yield was negatively correlated with index, with FDK, and with DON, whereas index was positively correlated with FDK and with DON, and FDK and DON were positively correlated. Correlation between index and DON, index and FDK, and FDK and DON was stronger in susceptible than in moderately resistant cultivars, whereas the negative correlation between yield and FDK and yield and DON was stronger in moderately resistant than in susceptible cultivars. Overall, the strongest correlation was between index and DON (0.74 ≤ R ≤ 0.88, P ≤ 0.05). The results from this study indicate that fungicide efficacy in reducing FHB and DON was greater in moderately resistant cultivars than in susceptible ones. This shows that integrating cultivar resistance with fungicide application can be an effective strategy for management of FHB and DON in winter wheat.


2012 ◽  
Vol 132 (2) ◽  
pp. 1087-1091 ◽  
Author(s):  
Emerson M. Del Ponte ◽  
Jaqueline Garda-Buffon ◽  
Eliana Badiale-Furlong

2020 ◽  
Vol 8 (4) ◽  
pp. 617
Author(s):  
Tim Birr ◽  
Mario Hasler ◽  
Joseph-Alexander Verreet ◽  
Holger Klink

Fusarium head blight (FHB) is one of the most important diseases of wheat, causing yield losses and mycotoxin contamination of harvested grain. A complex of different toxigenic Fusarium species is responsible for FHB and the composition and predominance of species within the FHB complex are determined by meteorological and agronomic factors. In this study, grain of three different susceptible winter wheat cultivars from seven locations in northern Germany were analysed within a five-year survey from 2013 to 2017 by quantifying DNA amounts of different species within the Fusarium community as well as deoxynivalenol (DON) and zearalenone (ZEA) concentrations. Several Fusarium species co-occur in wheat grain samples in all years and cultivars. F. graminearum was the most prevalent species, followed by F. culmorum, F. avenaceum and F. poae, while F. tricinctum and F. langsethiae played only a subordinate role in the FHB complex in terms of DNA amounts. In all cultivars, a comparable year-specific quantitative occurrence of the six detected species and mycotoxin concentrations were found, but with decreased DNA amounts and mycotoxin concentrations in the more tolerant cultivars, especially in years with higher disease pressure. In all years, similar percentages of DNA amounts of the six species to the total Fusarium DNA amount of all detected species were found between the three cultivars for each species, with F. graminearum being the most dominant species. Differences in DNA amounts and DON and ZEA concentrations between growing seasons depended mainly on moisture factors during flowering of wheat, while high precipitation and relative humidity were the crucial meteorological factors for infection of wheat grain by Fusarium. Highly positive correlations were found between the meteorological variables precipitation and relative humidity and DNA amounts of F. graminearum, DON and ZEA concentrations during flowering, whereas the corresponding correlations were much weaker several days before (heading) and after flowering (early and late milk stage).


2008 ◽  
Vol 98 (9) ◽  
pp. 999-1011 ◽  
Author(s):  
P. A. Paul ◽  
P. E. Lipps ◽  
D. E. Hershman ◽  
M. P. McMullen ◽  
M. A. Draper ◽  
...  

The effects of propiconazole, prothioconazole, tebuconazole, metconazole, and prothioconazole+tebuconazole (as a tank mix or a formulated premix) on the control of Fusarium head blight index (IND; field or plot-level disease severity) and deoxynivalenol (DON) in wheat were determined. A multivariate random-effects meta-analytical model was fitted to the log-transformed treatment means from over 100 uniform fungicide studies across 11 years and 14 states, and the mean log ratio (relative to the untreated check or tebuconazole mean) was determined as the overall effect size for quantifying fungicide efficacy. Mean log ratios were then transformed to estimate mean percent reduction in IND and DON relative to the untreated check (percent control: [Formula: see text]IND and [Formula: see text]DON) and relative to tebuconazole. All fungicides led to a significant reduction in IND and DON (P < 0.001), although there was substantial between-study variability. Prothioconazole+tebuconazole was the most effective fungicide for IND, with a [Formula: see text]IND of 52%, followed by metconazole (50%), prothioconazole (48%), tebuconazole (40%), and propiconazole (32%). For DON, metconazole was the most effective treatment, with a [Formula: see text]DON of 45%; prothioconazole+tebuconazole and prothioconazole showed similar efficacy, with [Formula: see text]DON values of 42 and 43%, respectively; tebuconazole and propiconazole were the least effective, with [Formula: see text]DON values of 23 and 12%, respectively. All fungicides, with the exception of propiconazole, were significantly more effective than tebuconazole for control of both IND and DON (P < 0.001). Relative to tebuconazole, prothioconazole, metconazole, and tebuconzole+prothioconzole reduced disease index a further 14 to 20% and DON a further 25 to 29%. In general, fungicide efficacy was significantly higher for spring wheat than for soft winter wheat studies; depending on the fungicide, the difference in percent control between spring and soft winter wheat was 5 to 20% for [Formula: see text]IND and 7 to 16% for [Formula: see text]DON. Based on the mean log ratios and between-study variances, the probability that IND or DON in a treated plot from a randomly selected study was lower than that in the check by a fixed margin was determined, which confirmed the superior efficacy of prothioconazole, metconazole, and tebuconzole+prothioconzole for Fusarium head blight disease and toxin control.


Food Control ◽  
2015 ◽  
Vol 54 ◽  
pp. 250-258 ◽  
Author(s):  
B. Jaillais ◽  
P. Roumet ◽  
L. Pinson-Gadais ◽  
D. Bertrand

2011 ◽  
Vol 64 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Skaidre Suproniene ◽  
Audrone Mankeviciene ◽  
Irena Gaurilcikiene

The effects of fungicides on Fusarium spp. and their associated mycotoxins in naturally infected winter wheat grain Field trials conducted at the Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (central part of Lithuania) in 2009 were aimed to evaluate the effect of fungicides on Fusarium Head Blight (FHB) in a naturally infected field. A single application of dimoxystrobin + epoxiconazole (Swing Gold), prothioconazole (Proline), metconazole (Juventus), tebuconazole (Folicur), prothioconazole + tebuconazole (Prosaro) was applied to winter wheat cv. ‘Zentos’ at the manufacturer's recommended doses at anthesis (BBCH 65). The FHB incidence and severity were assessed at milk and hard maturity stages. The percentage of Fusarium infected grain and deoxynivalenol (DON), zearalenone (ZEN) and T-2 toxin (T-2) concentrations in harvested grain were determined. In all fungicide treated plots a significant reduction of FHB incidence and severity was determined; however the fungicides did not exert any effect on the amount of Fusarium-infected grain as compared with the untreated control. A reduction of DON, ZEN and T-2 contents in grain was determined in tebuconazole treatments. Fusarium avenaceum (Fr.) Sacc, F. culmorum (W. G. Sm.) Sacc., F. poae (Peck) Wollenw, F. sporotrichioides Sherb. and F. tricinctum (Corda) Sacc were identified in wheat grain, F. poae was prevalent.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1549
Author(s):  
Elisa González-Domínguez ◽  
Pierluigi Meriggi ◽  
Matteo Ruggeri ◽  
Vittorio Rossi

Fungicides used to control Fusarium head blight (FHB) are commonly applied at the wheat growth stage considered to be most susceptible, i.e., anthesis. We compared the efficacy of the most commonly used fungicide groups that were applied following two strategies: (i) at pre-defined growth stages, from the first half of heading to the end of flowering (experiment 1, in 2013 to 2015), or (ii) based on timing of infection by F. graminearum, specifically at 10, 7, 4, or 1 day before, or 3 or 5 days after artificial inoculation of the fungus (experiment 2, in 2017 and 2018). Fungicide efficacy was evaluated in terms of FHB incidence, FHB severity, and DON contamination by using generalised mixed models. In experiment 1, all fungicide groups reduced FHB severity and DON but only by <50% compared to an untreated control, with no differences among fungicides or growth stages at time of application. In experiment 2, the efficacy of fungicides was higher for applications at 1 or 4 days before inoculation than at 7 or 10 days before or 3 or 5 days after inoculation, with differences among fungicide groups. Based on our results, the timing of fungicide application for FHB control should be based on the time of F. graminearum infection rather than on wheat phenology.


Sign in / Sign up

Export Citation Format

Share Document