Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst

Food Control ◽  
2019 ◽  
Vol 100 ◽  
pp. 183-188 ◽  
Author(s):  
Shumin Sun ◽  
Ran Zhao ◽  
Yanli Xie ◽  
Yong Liu
2018 ◽  
Vol 15 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Chengpeng Xu ◽  
Shengying Ye ◽  
Xiaolei Cui ◽  
Quan Zhang ◽  
Yan Liang

Background: Improper storage and raw materials make peanut oil susceptible to Aflatoxin B1 (AFB1). The semiconductor TiO2 photocatalysis technology is an effective technology which is widely used in sewage treatment, environmental protection and so on. Moreover, the photocatalytic efficiency can be improved by doping I. Method: The experiment is divided into two parts. In the first part, supported TiO2 thin film (STF) was prepared on the quartz glass tube (QGT) by the sol-gel and calcination method and the supported iodine doped supported TiO2 thin film (I-STF) was synthesized using potassium iodate solution. In the second part, the photocatalytic degradation of AFB1 was performed in a self-made photocatalytic reactor. The AFB1 was detected by ELISA kit. Results: The photocatalytic degradation of AFB1 has been proven to follow pseudo first-order reaction kinetics well (R2 > 0.95). The maximum degradation rate of 81.96%, which was reached at the optimum iodine concentration of 0.1mol/L, was 11.38% higher than that with undoped STF. The doping of iodine reduces the band-gap of TiO2, thereby increasing the photocatalytic response range. The proportion of Ti4+ in I-STF has decreased, which means that Ti4+ are replaced by I. The I-STF prepared at iodine concentration of 0.1mol/L has good photocatalytic properties.


Desalination ◽  
2010 ◽  
Vol 263 (1-3) ◽  
pp. 107-112 ◽  
Author(s):  
Li Gu ◽  
Zhenxiang Chen ◽  
Cheng Sun ◽  
Bo Wei ◽  
Xin Yu

2014 ◽  
Vol 26 (1) ◽  
pp. 145-150 ◽  
Author(s):  
Kefayat Ullah ◽  
Shu Ye ◽  
Sourav Sarkar ◽  
Lei Zhu ◽  
Ze-Da Meng ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) in aqueous solution under UV-irradiation of wavelength 400 nm was carried out with TiO2 doped with activated carbon (A) and clinoptilolite (Z) via the co-precipitation technique. The physiochemical properties of the nanocomposite (A–TiO2 and Z–TiO2) and TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. Results of the nanocomposite (A–TiO2 and Z–TiO2) efficiency was compared to that with the TiO2, which demonstrated their adsorption and synergistic effect for the removal of chemical oxygen demand (COD) and color from the wastewater. At an optimal load of 4 g, the photocatalytic degradation activity (Z–TiO2 > A–TiO2 > TiO2) was found favorably by the second-order kinetic model. Consequently, the Langmuir adsorption isotherms favored the nanocomposites (Z–TiO2 > A–TiO2), whereas that of the TiO2 fitted very well on the Freundlich isotherm approach. Z–TiO2 evidently exhibited a high photocatalytic efficacy of decomposition over 80% of BPB (COD) at reaction rate constant (k) and coefficient of determination (R2) values of 5.63 × 10−4 min−1 and 0.989, respectively.


Sign in / Sign up

Export Citation Format

Share Document