Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history

2007 ◽  
Vol 247 (1-3) ◽  
pp. 98-106 ◽  
Author(s):  
J. Buiteveld ◽  
G.G. Vendramin ◽  
S. Leonardi ◽  
K. Kamer ◽  
T. Geburek
Diversity ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 90 ◽  
Author(s):  
Markus Müller ◽  
Precious Annie Lopez ◽  
Aristotelis C. Papageorgiou ◽  
Ioannis Tsiripidis ◽  
Oliver Gailing

Two subspecies of European beech (Fagus sylvatica L.) can be found in southeast Europe: Fagus sylvatica ssp. sylvatica L. and Fagus sylvatica ssp. orientalis (Lipsky) Greut. & Burd. (Fagus orientalis Lipsky). In a previous study, based on genetic diversity patterns and morphological characters, indications of hybridization between both subspecies were found in northeastern Greece, a known contact zone of F. sylvatica and F. orientalis. Nevertheless, potential genetic admixture has not been investigated systematically before. Here, we investigated genetic diversity and genetic structure of 14 beech populations originating from Greece and Turkey as well as of two reference F. sylvatica populations from Germany based on nine expressed sequence tag-simple sequence repeat (EST-SSR) markers. Very low genetic differentiation was detected among F. sylvatica populations (mean GST: 0.005) as well as among F. orientalis populations (mean GST: 0.008), but substantial differentiation was detected between populations of the two subspecies (mean GST: 0.122). Indications for hybridization between both subspecies were revealed for one population in Greece. One of the genetic markers showed specific allele frequencies for F. sylvatica and F. orientalis and may be used as a diagnostic marker in future studies to discriminate both subspecies.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 725
Author(s):  
Olympia Tsipidou ◽  
Ludger Leinemann ◽  
Georgios Korakis ◽  
Reiner Finkeldey ◽  
Oliver Gailing ◽  
...  

Beech (Fagus sylvatica L.) is one of the most important forest trees in Europe and its current broad expanse over the continent is believed to be the outcome of the Holocene postglacial expansion of lineages originating from different glacial refugia. Studies using gene markers, pollen profiles and fossils suggest the main locations of glacial refugia in Southern Europe. In this study, we conduct a fine-scale genetic study on the beech populations surrounding the Almopia basin, an area that is said to have hosted one of the main European glacial refugia for several plant and animal species during the Pleistocene Epoch. We test the hypothesis of the existence of a local refugium in the study area for beech to understand the spatial genetic pattern of the putative refugial beech populations in the area and to investigate possible genetic connections between the local beech populations and the European expansion of the species. The genetic diversity of 100 sampled trees in 20 plots representing the expansion of beech in the area was studied using chloroplast and nuclear DNA microsatellites (cpSSR and nSSR, respectively). All three cpSSR regions were polymorphic, resulting in eight haplotypes, separated spatially in two distinct groups (one on the western and the other on the eastern part of the Almopia basin) that correspond to two different postglacial beech lineages. Furthermore, the cpSSR sequences of the eastern lineage are genetically identical to those of beech populations extending over central and northern Europe. The nSSR markers were highly polymorphic, and the trees studied were separated into two genetic groups that coincided with the cpSSR ones in locations where the topography is more pronounced. These results indicated that the Almopia region was indeed a major refugium for beech that possibly produced two main postglacial lineages for Europe, one of which is connected with the majority of beech populations growing on the continent. These southern refugial populations are important diversity centers that need to be the subject of special management and conservation.


2016 ◽  
Vol 68 (4) ◽  
pp. 781-788 ◽  
Author(s):  
Srdjan Stojnic ◽  
Sasa Orlovic ◽  
Danijela Miljkovic ◽  
Wuehlisch von

European beech (Fagus sylvatica L.) is one of the most important tree species in Europe. Due to substantial genetic diversity and phenotypic plasticity, beech has successfully adapted to different environments within its natural range. Provenance tests provide a good basis for studying within- and between-provenance genetic variation, due to homogeneous within-trial environmental conditions. The aim of the present study was to determine the within- and between-provenance genetic variability of certain leaf morphological traits among eleven beech provenances, grown in a common garden experiment. Univariate analysis of variance (ANOVA) was used to test for differences among the studied beech provenances. Principal component analysis (PCA) allowed a complex assessment of the relationships among the provenances and an estimation of multivariate relations among the analyzed characters. The results of the study revealed the existence of substantial variability among provenances (p<0.001). Likewise, high genetic variability was observed at the intra-provenance level (p<0.001). The first three principal components (PC1-PC3) explained approximately 81% of the total variance among the European beech provenances tested. The highest contribution on PC1 corresponded to variables related to leaf size: leaf area (-0.882) and leaf width (-0.876). Based on the position of provenances on a PCA scatter plot, it could be assumed that European beech is characterized by a more ecotypic pattern of genetic variation rather than by clinal variation. Also, the presence of considerable genetic diversity within provenances will be important in the light of climate change impact on beech, since it could potentially facilitate rapid adaptation.


Sign in / Sign up

Export Citation Format

Share Document