scholarly journals Intra- and interprovenance variations in leaf morphometric traits in European beech (Fagus sylvatica L.)

2016 ◽  
Vol 68 (4) ◽  
pp. 781-788 ◽  
Author(s):  
Srdjan Stojnic ◽  
Sasa Orlovic ◽  
Danijela Miljkovic ◽  
Wuehlisch von

European beech (Fagus sylvatica L.) is one of the most important tree species in Europe. Due to substantial genetic diversity and phenotypic plasticity, beech has successfully adapted to different environments within its natural range. Provenance tests provide a good basis for studying within- and between-provenance genetic variation, due to homogeneous within-trial environmental conditions. The aim of the present study was to determine the within- and between-provenance genetic variability of certain leaf morphological traits among eleven beech provenances, grown in a common garden experiment. Univariate analysis of variance (ANOVA) was used to test for differences among the studied beech provenances. Principal component analysis (PCA) allowed a complex assessment of the relationships among the provenances and an estimation of multivariate relations among the analyzed characters. The results of the study revealed the existence of substantial variability among provenances (p<0.001). Likewise, high genetic variability was observed at the intra-provenance level (p<0.001). The first three principal components (PC1-PC3) explained approximately 81% of the total variance among the European beech provenances tested. The highest contribution on PC1 corresponded to variables related to leaf size: leaf area (-0.882) and leaf width (-0.876). Based on the position of provenances on a PCA scatter plot, it could be assumed that European beech is characterized by a more ecotypic pattern of genetic variation rather than by clinal variation. Also, the presence of considerable genetic diversity within provenances will be important in the light of climate change impact on beech, since it could potentially facilitate rapid adaptation.

Genetika ◽  
2019 ◽  
Vol 51 (3) ◽  
pp. 937-959 ◽  
Author(s):  
Erna Vastag ◽  
Branislav Kovacevic ◽  
Sasa Orlovic ◽  
Lazar Kesic ◽  
Mirjana Bojovic ◽  
...  

In the present study, variations of leaf stomatal traits for fourteen European beech provenances (Fagus sylvatica L.), originating from six countries (Bosnia and Herzegovina, Croatia, Germany, Hungary, Romania and Serbia), were evaluated at the inter- and intra- provenances levels. Ten stomatal traits (stomatal density (SD), guard cell length (LA) and width (WB), stomatal aperture length (La) and width (Wb ), pore surface of guard cell (SPSLAWB), pore surface of a widely opened pore (SPSLaWb), coefficient (SSC), potential conductance index (PCI) and relative stomatal pore surface (RSPS)) were examined using methods of univariate (ANOVA and Tukey's HSD test) and multivariate statistical analyses (principal component analysis (PCA), discriminant analysis and cluster analysis). The results obtained provide significant insight into the genetic diversity and differentiation of European beech provenances and confirmed high genetic variability within and between examined European beech provenances, according to all examined parameters. Differences at the intra- provenance level had a bigger impact on most of the examined stomatal traits (with 70-80% of total variation), while differences at the inter- provenances level accounted for only 20-30% to the total expected variance. The results of PCA and canonical analysis suggest ecotypic pattern of genetic variability related to seed origin, which influenced leaf stomatal traits in F. sylvatica provenances. Forward stepwise discriminative analysis showed that WB, SD, PCI, SPSLaWb and Wb traits accounted for the same level of discrimination, as all the examined stomatal parameters together. However, the analysis detected considerably small correct allocation of the model that included all examined traits (only 38.85%). In order to discriminate examined beech provenances more precisely, additional phenotypical traits (e.g. morphological, physiological, etc.) should be included in the model.


2007 ◽  
Vol 247 (1-3) ◽  
pp. 98-106 ◽  
Author(s):  
J. Buiteveld ◽  
G.G. Vendramin ◽  
S. Leonardi ◽  
K. Kamer ◽  
T. Geburek

Diversity ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 90 ◽  
Author(s):  
Markus Müller ◽  
Precious Annie Lopez ◽  
Aristotelis C. Papageorgiou ◽  
Ioannis Tsiripidis ◽  
Oliver Gailing

Two subspecies of European beech (Fagus sylvatica L.) can be found in southeast Europe: Fagus sylvatica ssp. sylvatica L. and Fagus sylvatica ssp. orientalis (Lipsky) Greut. & Burd. (Fagus orientalis Lipsky). In a previous study, based on genetic diversity patterns and morphological characters, indications of hybridization between both subspecies were found in northeastern Greece, a known contact zone of F. sylvatica and F. orientalis. Nevertheless, potential genetic admixture has not been investigated systematically before. Here, we investigated genetic diversity and genetic structure of 14 beech populations originating from Greece and Turkey as well as of two reference F. sylvatica populations from Germany based on nine expressed sequence tag-simple sequence repeat (EST-SSR) markers. Very low genetic differentiation was detected among F. sylvatica populations (mean GST: 0.005) as well as among F. orientalis populations (mean GST: 0.008), but substantial differentiation was detected between populations of the two subspecies (mean GST: 0.122). Indications for hybridization between both subspecies were revealed for one population in Greece. One of the genetic markers showed specific allele frequencies for F. sylvatica and F. orientalis and may be used as a diagnostic marker in future studies to discriminate both subspecies.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 469 ◽  
Author(s):  
Markus Müller ◽  
Laura Cuervo-Alarcon ◽  
Oliver Gailing ◽  
Rajendra K.C. ◽  
Meena Chhetri ◽  
...  

Climate change can adversely affect the growth of European beech (Fagus sylvatica L.) across its entire distribution range. Therefore, knowledge of the adaptive potential of this species to changing climatic conditions is of foremost importance. Genetic diversity is the basis for adaptation to environmental stress, and the regeneration phase of forests is a key stage affecting genetic diversity. Nevertheless, little is known about the effect of climate change on the genetic diversity of adult trees compared to their progeny. Here, we present genetic diversity data for 24 beech populations ranging from northeast Germany to southwest Switzerland. Potentially adaptive genetic variation was studied using single nucleotide polymorphism (SNP) markers in candidate genes that are possibly involved in adaptive trait variation. In addition, more than 2000 adult trees and 3000 of their seedlings were genotyped with simple sequence repeat (SSR) markers to determine selectively neutral genetic diversity and differentiation among populations. All populations showed high SSR and SNP variation, and no differences in genetic diversity were found between adult trees and their offspring. The genetic differentiation between adults and seedlings within the same stands was also insignificant or very low. Therefore, we can conclude tentatively that the transfer of genetic variation among tree generations, currently, is not much affected by climate change, at least in the studied beech populations.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 725
Author(s):  
Olympia Tsipidou ◽  
Ludger Leinemann ◽  
Georgios Korakis ◽  
Reiner Finkeldey ◽  
Oliver Gailing ◽  
...  

Beech (Fagus sylvatica L.) is one of the most important forest trees in Europe and its current broad expanse over the continent is believed to be the outcome of the Holocene postglacial expansion of lineages originating from different glacial refugia. Studies using gene markers, pollen profiles and fossils suggest the main locations of glacial refugia in Southern Europe. In this study, we conduct a fine-scale genetic study on the beech populations surrounding the Almopia basin, an area that is said to have hosted one of the main European glacial refugia for several plant and animal species during the Pleistocene Epoch. We test the hypothesis of the existence of a local refugium in the study area for beech to understand the spatial genetic pattern of the putative refugial beech populations in the area and to investigate possible genetic connections between the local beech populations and the European expansion of the species. The genetic diversity of 100 sampled trees in 20 plots representing the expansion of beech in the area was studied using chloroplast and nuclear DNA microsatellites (cpSSR and nSSR, respectively). All three cpSSR regions were polymorphic, resulting in eight haplotypes, separated spatially in two distinct groups (one on the western and the other on the eastern part of the Almopia basin) that correspond to two different postglacial beech lineages. Furthermore, the cpSSR sequences of the eastern lineage are genetically identical to those of beech populations extending over central and northern Europe. The nSSR markers were highly polymorphic, and the trees studied were separated into two genetic groups that coincided with the cpSSR ones in locations where the topography is more pronounced. These results indicated that the Almopia region was indeed a major refugium for beech that possibly produced two main postglacial lineages for Europe, one of which is connected with the majority of beech populations growing on the continent. These southern refugial populations are important diversity centers that need to be the subject of special management and conservation.


Sign in / Sign up

Export Citation Format

Share Document