Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model

2011 ◽  
Vol 261 (6) ◽  
pp. 995-1002 ◽  
Author(s):  
Tian-Ming Yen ◽  
Joou-Shian Lee
2020 ◽  
Vol 11 ◽  
Author(s):  
Wanjie Lv ◽  
Guomo Zhou ◽  
Guangsheng Chen ◽  
Yufeng Zhou ◽  
Zhipeng Ge ◽  
...  

Phytolith-occluded carbon (PhytOC), a promising long-term biogeochemical carbon sequestration mode, plays a crucial role in the global carbon cycle and the regulation of atmospheric CO2. Previous studies mostly focused on the estimation of the content and storage of PhytOC, while it remains unclear about how the management practices affect the PhytOC content and whether it varies with stand age. Moso bamboo (Phyllostachys heterocycla var. pubescens) has a great potential in carbon sequestration and is rich in PhytOC. Here, we selected four management treatments, including control (CK), compound fertilization (CF), silicon (Si) fertilization (SiF) (monosilicic acid can form phytoliths through silicification), and cut to investigate the variation of phytoliths and PhytOC contents in soil, leaves, and litters, and their storage in Moso bamboo forests. In soil, the SiF fertilizer treatment significantly (P < 0.05) increased phytolith content, PhytOC content, and storage compared to CK, while there were no significant differences between the treatments of CF and cut. In leaf, compared with CK, phytolith content of the second-degree leaves under SiF and the first-degree leaves under cut treatment significantly increased, and the three treatments significantly increased PhytOC storage for leaves with three age classes. In litter, the phytolith and PhytOC contents under the three treatments were not significantly different from that under the CK treatment. The PhytOC storage increased by 19.33% under SiF treatment, but significantly decreased by 40.63% under the CF treatment. For the entire Moso bamboo forest ecosystems, PhytOC storage of all the three management treatments increased compared with CK, with the largest increase by 102% under the SiF treatment. The effects of management practices on the accumulation of PhytOC varied with age. Our study implied that Si fertilization has a greater potential to significantly promote the capacity of sequestration of carbon in Moso bamboo forests.


2011 ◽  
Vol 77 (11) ◽  
pp. 1123-1131 ◽  
Author(s):  
Guomo Zhou ◽  
Xiaojun Xu ◽  
Huaqiang Du ◽  
Hongli Ge ◽  
Yongjun Shi ◽  
...  

2016 ◽  
Vol 38 (8) ◽  
pp. 733-745 ◽  
Author(s):  
Tao Wang ◽  
Jin-Jun Yue ◽  
Xue-Ji Wang ◽  
Lu Xu ◽  
Lu-Bin Li ◽  
...  

2021 ◽  
Author(s):  
Lin Xu ◽  
Yongjun Shi ◽  
Wanjie Lv ◽  
Zhengwen Niu ◽  
Ning Yuan ◽  
...  

<p>Forest ecosystem has a high carbon sequestration capacity and plays a crucial role in maintaining global carbon balance and climate change. Phytolith-occluded carbon (PhytOC), a promising long-term biogeochemical carbon sequestration mechanism, has attracted more attentions in the global carbon cycle and the regulation of atmospheric CO<sub>2</sub>. Therefore, it is of practical significance to investigate the PhytOC accumulation in forest ecosystems. Previous studies have mostly focused on the estimation of the content and storage of PhytOC, while there were still few studies on how the management practices affect the PhytOC content. Here, this study focused on the effects of four management practices (compound fertilization, silicon fertilization, cut and control) on the increase of phytolith and PhytOC in Moso bamboo forests. We found that silicon fertilization had a greater potential to significantly promote the capacity of carbon sequestration in Moso bamboo forests. this finding positively corresponds recent studies that the application of silicon fertilizers (e.g., biochar) increase the Si uptake<strong><sup>1</sup></strong> to promote phytolith accumulation and its PhytOC sequestration in the plant-soil system<strong><sup>2</sup></strong>. Of course, the above-mentioned document<strong><sup>2</sup></strong> also had their own shortcomings, i.e., the experimental research time was not long, lacking long-term follow-up trial and the bamboo forest parts were also limited, so that the test results lack certain reliability. We have set up a long-term experiment plot to study the effects of silicon fertilizer on the formation and stability of phytolith and PhytOC in Moso bamboo forests. But anyway, different forest management practices, especially the application of high-efficiency silicon-rich fertilizers<strong><sup>1</sup></strong>, may be an effective way to increase the phytolith and PhytOC storage in forest ecosystems, and thereby improve the long-term CO<sub>2 </sub>sequestration capacity of forest ecosystems. Research in this study provides a good "forest plan" to achieve their national voluntary emission reduction commitments and achieves carbon neutrality goals for all over the world.</p><p>Refences:</p><p><sup>1</sup>Li et al., 2019. Plant and soil, 438(1-2), pp.187-203.</p><p><sup>2</sup>Huang et al., 2020, Science of The Total Environment, 715, p.136846.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhaohe Yang ◽  
Lei Chen ◽  
Markus V. Kohnen ◽  
Bei Xiong ◽  
Xi Zhen ◽  
...  

Abstract Moso bamboo is one of the economically most important plants in China. Moso bamboo is a monocarpic perennial that exhibits poor and slow germination. Thus, the flowering often causes destruction of moso bamboo forestry. However, how control of flowering and seed germination are regulated in moso bamboo is largely unclear. In this study, we identified 5 members (PhFT1-5) of the phosphatidyl ethanolamine-binding proteins (PEBP) family from moso bamboo genome that regulate flowering, flower architecture and germination, and characterized the function of these PEBP family genes further in Arabidopsis. Phylogenetic analysis revealed that 3 (PhFT1, PhFT2 and PhFT3), 1 (PhFT4) and 1 (PhFT5) members belong to the TFL1-like clade, FT-like clade, and MFT-like clade, respectively. These PEBP family genes possess all structure necessary for PEBP gene function. The ectopic overexpression of PhFT4 and PhFT5 promotes flowering time in Arabidopsis, and that of PhFT1, PhFT2 and PhFT3 suppresses it. In addition, the overexpression of PhFT5 promotes seed germination rate. Interestingly, the overexpression of PhFT1 suppressed seed germination rate in Arabidopsis. The expression of PhFT1 and PhFT5 is significantly higher in seed than in tissues including leaf and shoot apical meristem, implying their function in seed germination. Taken together, our results suggested that the PEBP family genes play important roles as regulators of flowering and seed germination in moso bamboo and thereby are necessary for the sustainability of moso bamboo forest.


2017 ◽  
Vol 63 (No. 11) ◽  
pp. 511-518 ◽  
Author(s):  
Mohammadi Zohreh ◽  
Limaei Soleiman Mohammadi ◽  
Lohmander Peter ◽  
Olsson Leif

The aim of the study is to estimate the aboveground carbon sequestration and to determine the economic value of forests in carbon sequestration as a way of mitigating climate change. This research was conducted at Asalem forests in the north of Iran. In order to estimate the amount of annual carbon sequestration, the annual volume growth of stand was determined using the diameter increment data and tariff. The amount of carbon sequestration was estimated based on wood density and using the allometric equation. The carbon model was obtained for each species. The value of sequestrated carbon in stumpage and the net present value of carbon sequestration were determined in order to estimate the economic value of carbon sequestration. Results indicated that the annual volume growth per hectare and the carbon stored are 6.023 m<sup>3</sup>·yr<sup>–1</sup> and 2.307 t·ha<sup>–1</sup>, respectively. Finally, the carbon sequestration value of stumpage and the net present value of carbon sequestration are 11,023.753 and 790.361 (10,000 IRR·t<sup>–1</sup>·ha<sup>–1</sup>), respectively. Our results are very useful in estimating the total economic value of Asalem forests and other Iranian Caspian forests in the future.


Sign in / Sign up

Export Citation Format

Share Document