The novel interaction between Phytophthora ramorum and wildfire elicits elevated ambrosia beetle landing rates on tanoak, Notholithocarpus densiflorus

2014 ◽  
Vol 318 ◽  
pp. 21-33 ◽  
Author(s):  
Maia M. Beh ◽  
Margaret R. Metz ◽  
Steven J. Seybold ◽  
David M. Rizzo
2011 ◽  
Vol 41 (4) ◽  
pp. 763-772 ◽  
Author(s):  
Benjamin S. Ramage ◽  
Kevin L. O’Hara ◽  
Alison B. Forrestel

Sudden oak death is dramatically altering forests throughout coastal California, but little is known about the communities that are assembling in affected areas. This emerging disease, caused by the exotic pathogen Phytophthora ramorum (S. Werres, A.W.A.M. de Cock), has had especially severe effects on tanoak ( Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S.H. Oh), a broadleaf evergreen that is abundant in forests dominated by coast redwood ( Sequoia sempervirens (D.Don) Endl.). Tanoak, a valuable food source to numerous wildlife species, is unlikely to successfully regenerate in diseased areas, and thus, affected redwood forests are transitioning to a novel state. In this study, to predict which species might replace tanoak, we investigated regeneration patterns in heavily impacted stands in Marin County, California. Our main findings were as follows: (i) despite reductions in canopy cover, there is no evidence that any species other than tanoak has exhibited a regenerative response to tanoak mortality, (ii) the regeneration stratum was dominated by redwood and tanoak (other tree species were patchy and (or) scarce), and (iii) some severely affected areas lacked sufficient regeneration to fully re-occupy available growing space. Our results indicate that redwood is likely to initially re-occupy the majority of the ground relinquished by tanoak, but also provide evidence that longer-term trajectories are unresolved, and may be highly responsive to management interventions.


Plant Disease ◽  
2019 ◽  
Vol 103 (12) ◽  
pp. 3154-3160 ◽  
Author(s):  
Kelsey L. Søndreli ◽  
Alan Kanaskie ◽  
Susanna Keriö ◽  
Jared M. LeBoldus

Phytophthora ramorum, the cause of sudden oak death (SOD), kills tanoak (Notholithocarpus densiflorus) trees in southwestern Oregon and California. Two lineages of P. ramorum are now found in wildland forests of Oregon (NA1 and EU1). In addition to the management of SOD in forest ecosystems, disease resistance could be used as a way to mitigate the impact of P. ramorum. The objectives of this study were to (i) characterize the variability in resistance of N. densiflorus among families using lesion length; (ii) determine whether lineage, isolate, family, or their interactions significantly affect variation in lesion length; and (iii) determine whether there are differences among isolates and among families in terms of lesion length. The parameters isolate nested within lineage (isolate[lineage]) and family × isolate(lineage) interaction explained the majority of the variation in lesion length. There was no significant difference between the NA1 and EU1 lineages in terms of mean lesion length; however, there were differences among the six isolates. Lesions on seedlings collected from surviving trees at infested sites were smaller, on average, than lesions of seedlings collected from trees at noninfested sites (P = 0.0064). The results indicate that there is potential to establish a breeding program for tanoak resistance to SOD and that several isolates of P. ramorum should be used in an artificial inoculation assay.


2012 ◽  
Vol 11 (11) ◽  
pp. 1313-1323 ◽  
Author(s):  
Matteo Garbelotto ◽  
Katherine J. Hayden

ABSTRACTTen years after a threatening and previously unknown disease of oaks and tanoaks appeared in coastal California, a significant amount of progress has been made toward the understanding of its causal agentPhytophthora ramorumand of the novel pathosystems associated with this exotic organism. However, a complete understanding of the ecology and epidemiology of this species still eludes us. In part, our inability to fully understand this organism is due to its phylogenetic, phylogeographic, phenotypic, and epidemiological complexities, all reviewed in this paper. Most lines of evidence suggest that the high degree of disease severity reported in California is not simply due to a generalized lack of resistance or tolerance in naïve hosts but also to an innate ability of the pathogen to survive in unfavorable climatic conditions and to reproduce rapidly when conditions become once again favorable.


2010 ◽  
Vol 34 (8) ◽  
pp. S33-S33
Author(s):  
Wenchao Ou ◽  
Haifeng Chen ◽  
Yun Zhong ◽  
Benrong Liu ◽  
Keji Chen

Sign in / Sign up

Export Citation Format

Share Document