Tree mortality after synchronized forest insect outbreaks: Effects of tree species, bole diameter, and cutting history

2014 ◽  
Vol 319 ◽  
pp. 10-17 ◽  
Author(s):  
Tracey N. Johnson ◽  
Steven W. Buskirk ◽  
Gregory D. Hayward ◽  
Martin G. Raphael
2020 ◽  
Vol 12 (10) ◽  
pp. 1655 ◽  
Author(s):  
Benjamin C. Bright ◽  
Andrew T. Hudak ◽  
Arjan J.H. Meddens ◽  
Joel M. Egan ◽  
Carl L. Jorgensen

Forest insect outbreaks have caused and will continue to cause extensive tree mortality worldwide, affecting ecosystem services provided by forests. Remote sensing is an effective tool for detecting and mapping tree mortality caused by forest insect outbreaks. In this study, we map insect-caused tree mortality across three coniferous forests in the Western United States for the years 1984 to 2018. First, we mapped mortality at the tree level using field observations and high-resolution multispectral imagery collected in 2010, 2011, and 2018. Using these high-resolution maps of tree mortality as reference images, we then classified moderate-resolution Landsat imagery as disturbed or undisturbed and for disturbed pixels, predicted percent tree mortality with random forest (RF) models. The classification approach and RF models were then applied to time series of Landsat imagery generated with Google Earth Engine (GEE) to create annual maps of percent tree mortality. We separated disturbed from undisturbed forest with overall accuracies of 74% to 80%. Cross-validated RF models explained 61% to 68% of the variation in percent tree mortality within disturbed 30-m pixels. Landsat-derived maps of tree mortality were comparable to vector aerial survey data for a variety of insect agents, in terms of spatial patterns of mortality and annual estimates of total mortality area. However, low-level tree mortality was not always detected. We conclude that our methodology has the potential to generate reasonable estimates of annual tree mortality across large extents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hunter Stanke ◽  
Andrew O. Finley ◽  
Grant M. Domke ◽  
Aaron S. Weed ◽  
David W. MacFarlane

AbstractChanging forest disturbance regimes and climate are driving accelerated tree mortality across temperate forests. However, it remains unknown if elevated mortality has induced decline of tree populations and the ecological, economic, and social benefits they provide. Here, we develop a standardized forest demographic index and use it to quantify trends in tree population dynamics over the last two decades in the western United States. The rate and pattern of change we observe across species and tree size-distributions is alarming and often undesirable. We observe significant population decline in a majority of species examined, show decline was particularly severe, albeit size-dependent, among subalpine tree species, and provide evidence of widespread shifts in the size-structure of montane forests. Our findings offer a stark warning of changing forest composition and structure across the western US, and suggest that sustained anthropogenic and natural stress will likely result in broad-scale transformation of temperate forests globally.


2006 ◽  
Vol 36 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Julia Koricheva ◽  
Harri Vehviläinen ◽  
Janne Riihimäki ◽  
Kai Ruohomäki ◽  
Pekka Kaitaniemi ◽  
...  

Pure forest stands are widely believed to be more prone to pest outbreaks and disease epidemics than mixed stands, leading to recommendations of using stand diversification as a means of controlling forest pests and pathogens. We review the existing evidence concerning the effects of stand tree-species diversity on pests and pathogens in forests of the boreal zone. Experimental data from published studies provide no overall support for the hypothesis that diversification of tree stands can prevent pest outbreaks and disease epidemics. Although beneficial effects of tree-species diversity on stand vulnerability are observed in some cases, in terms of reductions in damage, these effects are not consistent over time and space and seem to depend more on tree-species composition than on tree-species diversity per se. In addition, while mixed stands may reduce the densities of some specialized herbivores, they may be more attractive to generalist herbivores. Given that generalist mammalian herbivores cause considerable tree mortality during the early stages of stand establishment in boreal forests, the net effect of stand diversification on stand damage is unlikely to be positive.


Author(s):  
A. S. Isaev ◽  
V. V. Kiselev ◽  
T. M. Ovchinnikova

2020 ◽  
Vol 462 ◽  
pp. 117997
Author(s):  
Lucía Molina ◽  
Mario Rajchenberg ◽  
Andrés de Errasti ◽  
Mary Catherine Aime ◽  
María Belén Pildain

2005 ◽  
Vol 20 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Hailemariam Temesgen ◽  
Stephen J. Mitchell

Abstract An individual-tree mortality model was developed for major tree species in complex stands (multi-cohort, multiaged, and mixed species) of southeastern British Columbia (BC), Canada. Data for 29,773 trees were obtained from permanent sample plots established in BC. Average annual diameter increment and mortality rates ranged from 0.08 to 0.17 cm/year and from 0.3 to 2.6%, respectively. Approximately 70% of the trees were used for model development and 30% for model evaluation. After evaluating the model, all 29,773 trees were used to fit the final model. A generalized logistic model was used to relate mortality to tree size, competition, and relative position of trees in a stand. The evaluation test demonstrated that the model appears to be well behaved and robust for the tree species considered in this study. For the eight tree species, the average deviation between observed and predicted annual mortality rates varied from −0.5 to 0.7% in the test data. West. J. Appl. For. 20(2):101–109.


2015 ◽  
Vol 12 (10) ◽  
pp. 2831-2845 ◽  
Author(s):  
L. Gu ◽  
S. G. Pallardy ◽  
K. P. Hosman ◽  
Y. Sun

Abstract. Using decade-long continuous observations of tree mortality and predawn leaf water potential (ψpd) at the Missouri Ozark AmeriFlux (MOFLUX) site, we studied how the mortality of important tree species varied and how such variations may be predicted. Water stress determined inter-annual variations in tree mortality with a time delay of 1 year or more, which was correlated fairly tightly with a number of quantitative predictors formulated based on ψpd and precipitation regimes. Predictors based on temperature and vapor pressure deficit anomalies worked reasonably well, particularly for moderate droughts. The exceptional drought of the year 2012 drastically increased the mortality of all species, including drought-tolerant oaks, in the subsequent year. The drought-influenced tree mortality was related to the species position along the spectrum of ψpd regulation capacity with those in either ends of the spectrum being associated with elevated risk of death. Regardless of species and drought intensity, the ψpd of all species recovered rapidly after sufficiently intense rain events in all droughts. This result, together with a lack of immediate leaf and branch desiccation, suggests an absence of catastrophic hydraulic disconnection in the xylem and that tree death was caused by significant but indirect effects. Species differences in the capacity of regulating ψpd and its temporal integral were magnified under moderate drought intensities but diminished towards wet and dry extremes. Severe droughts may overwhelm the capacity of even drought-tolerant species to maintain differential levels of water potential as the soil becomes exhausted of available water in the rooting zone, thus rendering them more susceptible to death if predisposed by other factors such as age.


2016 ◽  
Vol 382 ◽  
pp. 51-63 ◽  
Author(s):  
Marco Vanoni ◽  
Harald Bugmann ◽  
Magdalena Nötzli ◽  
Christof Bigler
Keyword(s):  

2015 ◽  
Vol 148 (S1) ◽  
pp. S138-S159 ◽  
Author(s):  
David A. MacLean

AbstractThe impacts of insect outbreaks on tree mortality, productivity, and stand development in Canada are reviewed, emphasising spruce budworm (Choristoneura fumiferana(Clemens), Lepidoptera: Tortricidae) and mountain pine beetle (Dendroctonus ponderosaeHopkins, Coleoptera: Curculionidae). Reduced growth and survival are a function of insect population and defoliation level. It is feasible to make short-term (annual) predictions of insect population and defoliation based upon sampling, but long-term, multi-year predictions are problematic. Given the historical record, it is expected that outbreaks will occur with relatively predictable frequency and basic host relationships and abiotic constraints will not change dramatically. However, the precision of predictions at fine scales is variable and reduced over time. Relationships between tree growth reduction, survival, and cumulative defoliation or beetle population level are available for major insect species. Understanding insect outbreak effects hinges on mortality, changes in interspecies competition, regeneration, and succession. Altered stand dynamics caused by insects can be interpreted for indicators such as wildlife habitat, old forest, riparian buffer cover, viewscapes, and connectivity. Anthropogenic changes are altering impacts via range expansions, northward shifts, and changes in forest composition. We can better understand effects of insect outbreaks and how best to ameliorate damage through a combination of empirical permanent plot studies, modelling, and manipulative experiments.


Sign in / Sign up

Export Citation Format

Share Document