scholarly journals Occurrence, density, and distribution of longleaf pine regeneration in southeastern forests: An assessment by forest type, disturbance and site quality

2021 ◽  
Vol 481 ◽  
pp. 118755
Author(s):  
Santosh K. Ojha ◽  
Wubishet Tadesse ◽  
Christopher M. Oswalt ◽  
Buddhi Gyawali
1997 ◽  
Vol 21 (1) ◽  
pp. 11-18 ◽  
Author(s):  
William M. Ford ◽  
A. Sydney Johnson ◽  
Philip E. Hale ◽  
James M. Wentworth

Abstract We analyzed correlations of forest type, age structure, and site index data with weights and antler characteristics of yearling white-tailed deer (Odocoileus virginianus) bucks from specific localities in the Chattahoochee, Cherokee, Nantahala, and Pisgah national forests in Georgia, Tennessee, and North Carolina. Areas in the northern part of the study region produced larger deer with larger antlers than those in the southern portion of the region. These northern areas differed from those to the south in having more diverse ownership and land use and in origins of deer stock. Weights and antler characteristics were significantly correlated (P < 0.05) with percent area in the cove hardwood type, but otherwise were poorly correlated with forest stand type and site index. Percent area in young (0-8 yr old) cove hardwood and in mid-successional (9-20 and 21-40) cove hardwood, pine (Pinus spp.), and upland oak (Quercus spp.) were significantly correlated (P < 0.05) with deer variables, particularly in years following a poor mast crop. Much of the quantifiable habitat influences on deer in the Southern Appalachians probably is masked by low deer densities and the small site quality differences among areas examined. Because much of the forest consists of mature mast-producing oaks and abundant forage is produced in both mature and younger aged stands, deer numbers seem to be below any threshold of quantifiable effects due to forest stand age structure. South. J. Appl. For. 21(1):11-18.


2010 ◽  
Vol 40 (7) ◽  
pp. 1373-1385 ◽  
Author(s):  
Patrick H. Brose ◽  
Thomas A. Waldrop

Disturbance–succession models describe the relationship between the disturbance regime and the dominant tree species of a forest type. Such models are useful tools in ecosystem management and restoration, provided they are accurate. We tested a disturbance–succession model for the oak–pine ( Quercus spp. – Pinus spp.) forests of the Appalachian Mountains region using dendrochronological techniques. In this model, fire promotes pines, while fire suppression, bark beetle outbreaks, and ice storms encourage oaks. We analyzed nine Appalachian oak–pine stands for species establishment dates and the occurrence of fires and canopy disturbances. We found no evidence that fire preferentially promoted the establishment of pine more than oak, nor did we find any evidence that canopy disturbances or periods of no disturbance facilitated the establishment of oak more than pine. Rather, we found that both species groups originated primarily after combined canopy and fire disturbances, and reduction of fire frequency and scope coincided with the cessation of successful oak and pine regeneration. Currently, heath shrubs are slowly dominating these stands, so we present a revised disturbance–succession model for land managers struggling to manage or restore oak–pine forests containing a dense ericaceous understory.


1982 ◽  
Vol 6 (1) ◽  
pp. 33-39
Author(s):  
Richard W. Guldin

Abstract Planting longleaf pine (Pinus palustris Mill.) seedlings grown in containers is a biologically feasible and cost-effective regeneration method for sandhill sites. Considering the cost of replanting sites where regeneration efforts fail, using container-grown seedlings can result in a lower total regeneration cost. A method of analysis is outlined for specific sites.


2019 ◽  
Vol 11 (15) ◽  
pp. 1803 ◽  
Author(s):  
John Hogland ◽  
Nathaniel Anderson ◽  
David L. R. Affleck ◽  
Joseph St. Peter

This study improved on previous efforts to map longleaf pine (Pinus palustris) over large areas in the southeastern United States of America by developing new methods that integrate forest inventory data, aerial photography and Landsat 8 imagery to model forest characteristics. Spatial, statistical and machine learning algorithms were used to relate United States Forest Service Forest Inventory and Analysis (FIA) field plot data to relatively normalized Landsat 8 imagery based texture. Modeling algorithms employed include softmax neural networks and multiple hurdle models that combine softmax neural network predictions with linear regression models to estimate key forest characteristics across 2.3 million ha in Georgia, USA. Forest metrics include forest type, basal area and stand density. Results show strong relationships between Landsat 8 imagery based texture and field data (map accuracy > 0.80; square root basal area per ha residual standard errors < 1; natural log transformed trees per ha < 1.081). Model estimates depicting spatially explicit, fine resolution raster surfaces of forest characteristics for multiple coniferous and deciduous species across the study area were created and made available to the public in an online raster database. These products can be integrated with existing tabular, vector and raster databases already being used to guide longleaf pine conservation and restoration in the region.


2001 ◽  
Vol 31 (5) ◽  
pp. 765-778 ◽  
Author(s):  
John P McGuire ◽  
Robert J Mitchell ◽  
E Barry Moser ◽  
Stephen D Pecot ◽  
Dean H Gjerstad ◽  
...  

Resource availability and planted longleaf pine (Pinus palustris Mill.) seedling and understory vegetation response within and among three sizes of experimentally created canopy gaps (0.11, 0.41, 1.63 ha) in a mature longleaf pine savanna were investigated for 2 years. Longleaf pine seedlings and understory vegetation showed increased growth in gaps created by tree removal. Longleaf pine seedling growth within gaps was maximized approximately 18 m from the uncut savanna. Increased longleaf pine seedling survival under the uncut savanna canopy observed after the first year suggests that the overstory may facilitate establishment of longleaf pine seedlings rather than reduce survival through competition. Despite the relative openness of the uncut longleaf pine forest, light quantity was increased by tree removal. Light was also the resource most strongly correlated with seedling and understory vegetation growth. Although net N mineralization was correlated to seedling response, the amount of variation explained was low relative to light. Belowground (root) gaps were not strong, in part because of non-pine understory roots increasing in biomass following tree removal. These results suggest that regeneration of longleaf pine may be maximized within gap sizes as small as approximately 0.10 ha, due largely to increases in light availability.


2021 ◽  
Vol 4 ◽  
Author(s):  
Andrew W. Whelan ◽  
Seth W. Bigelow ◽  
Joseph J. O’Brien

Litter from pine trees in open woodlands is an important fuel for surface fires, but litter from hardwood species may quell fire behavior. Lower intensity fires favor hardwood over longleaf pine regeneration, and while overstory hardwoods are important sources of food and shelter for many wildlife species, too many could result in canopy closure and a loss of ground layer diversity. Although some researchers have found synergies in fire effects when leaves of different species are combined, field tests of effects of tree guild diversity on fire behavior are lacking from the literature. We used neighborhood modeling to understand how diverse overstory trees in longleaf pine forests affect fire radiative energy density (FRED), and to determine the effect on top-kill of shrub-form hardwood trees. We measured the effects of three guilds of overstory trees (longleaf pine, upland oaks, and mesic oaks) on FRED, and related FRED to post-fire damage in four guilds of understory hardwoods (sandhill oaks, upland oaks, mesic oaks, and fleshy-fruited hardwoods). We found that FRED increased 33–56% near overstory longleaf pine but decreased 23–37% near overstory mesic oaks. Additive models of FRED performed well and no synergies or antagonisms were present. Seventy percent of stems of understory hardwoods survived fire with energy release typical of dormant-season fires in canopy gaps and near overstory mesic oaks. We also found that among understory trees &gt;2 m tall, upland and sandhill oaks were more likely than mesic oaks or fleshy-fruited hardwoods to avoid top-kill. We conclude that neighborhood models provide a method to predict longleaf pine forest structure and composition that allows for the ecological benefits of overstory hardwoods while maintaining ground-layer diversity. To maintain hardwood control, fire practitioners may need to select fire weather conditions to increase fire behavior especially during dormant-season burns.


2014 ◽  
Vol 44 (8) ◽  
pp. 977-985 ◽  
Author(s):  
Dale G. Brockway ◽  
Edward F. Loewenstein ◽  
Kenneth W. Outcalt

Proportional basal area (Pro-B) was developed as an accurate, easy-to-use method for making uneven-aged silviculture a practical management option. Following less than 3 h of training, forest staff from a range of professional backgrounds used Pro-B in an operational-scale field study to apply single-tree selection and group selection systems in longleaf pine (Pinus palustris Mill.) stands. Field crews achieved precision levels often within 3%–5% of the 11.5 m2·ha−1 target residual basal area. By aggregating many diameter classes into only three diameter-class groups, Pro-B improves efficiency by requiring tree markers to remember only three fractions, while making a single pass through the stand. Trees of large size, specific species and with good form, broad crowns and cavities can be retained, while adjusting spacing to release residuals. Systematic quantification of marking trees for removal enables different individuals to obtain similar results. Early observations revealed encouraging levels of pine regeneration and stand development, along with continuing good volume growth rates of 3% per year. Although less certain until one or more cutting cycles are completed, these early tests indicate that a stable mature forest structure should develop, which is characterized by the presence of large trees and natural regeneration.


1989 ◽  
Vol 13 (1) ◽  
pp. 34-40
Author(s):  
Gene A. Sirmon ◽  
Roger W. Dennington

Abstract Longleaf pine (Pinus palustris Mill) reforestation efforts were successful on the National Forest in south Mississippi when foresters began applying the proper technology. Artificial regeneration by planting bareroot seedlings and natural regeneration by the shelterwood system bothresulted in a plantation success rate consistently above 90%. This success can be attributed to better site preparation, better seedling culture, care, and handling, and more highly trained personnel committed to excellence in longleaf pine regeneration. South. J. Appl. For. 13(1):34-40.


Sign in / Sign up

Export Citation Format

Share Document