Spatial distribution of root systems of Pinus sylvestris var. mongolica trees with different ages in a semi-arid sandy region of Northeast China

2020 ◽  
pp. 118776
Author(s):  
Ting Zhang ◽  
Lining Song ◽  
Jiaojun Zhu ◽  
Guochen Wang ◽  
Mingcai Li ◽  
...  
Author(s):  
A N. Kabanov ◽  
◽  
S.A. Kabanova ◽  

Dendrochronological analysis was carried out in forest cultures of Pinus sylvestris of different ages growing in the green zone of Nur-Sultan city. It was found that the value of the annual radial growth is subject to a cycle with a period of 10-11 years. This is due to climatic conditions, in particular, with periods of solar insolation, which is confirmed by researches of other authors.


2011 ◽  
Vol 26 (4) ◽  
pp. 500-512 ◽  
Author(s):  
Hossein Tabari ◽  
Ali Aeini ◽  
P. Hosseinzadeh Talaee ◽  
B. Shifteh Some'e

2019 ◽  
Author(s):  
Marion Réveillet ◽  
Shelley MacDonell ◽  
Simon Gascoin ◽  
Christophe Kinnard ◽  
Stef Lhermitte ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2041
Author(s):  
Dandan Yan ◽  
Zhaoqing Luan ◽  
Dandan Xu ◽  
Yuanyuan Xue ◽  
Dan Shi

Water level fluctuations resulting from natural and anthropogenic factors have been projected to affect the functions and structures of wetland vegetation communities. Therefore, it is important to assess the impact of the hydrological gradient on wetland vegetation. This paper presents a case study on the Honghe National Nature Reserve (HNNR) in the Sanjiang Plain, located in Northeast China. In this study, 210 plots from 18 sampling line transects were sampled in 2011, 2012, and 2014 along the hydrological gradient. Using a Gaussian logistic regression model, we determined a relationship between three wetland plant species and a hydrologic indicator—a combination of the water level and soil moisture—and then applied that relationship to simulate the distribution of plants across a larger landscape by the geographic information system (GIS). The results show that the optimum ecological amplitude of Calamagrostis angustifolia to the hydrological gradient based on the probability of occurrence model was [0.09, 0.41], that of Carex lasiocarpa was [0.35, 0.57], and that of Carex pseudocuraica was [0.49, 0.77]. The optimum of Calamagrostis angustifolia was 0.25, Carex lasiocarpa was 0.46, and Carex pseudocuraica was 0.63. Spatial distribution probability maps were generated, as were maps detailing the distribution of the most suitable habitats for wetland vegetation species. Finally, the model simulation results were verified, showing that this approach can be employed to provide an accurate simulation of the spatial distribution pattern of wetland vegetation communities. Importantly, this study suggests that it may be possible to predict the spatial distribution of different species from the hydrological gradient.


Sign in / Sign up

Export Citation Format

Share Document