Empirical survival model for European beech (Fagus sylvatica L.) seedlings in response to interactive resource gradients and (a-) biotic conditions within an experimental canopy gap study

2021 ◽  
Vol 499 ◽  
pp. 119627
Author(s):  
Jan F. Wilkens ◽  
Sven Wagner
Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 637 ◽  
Author(s):  
Melissa Stiers ◽  
Katharina Willim ◽  
Dominik Seidel ◽  
Christian Ammer ◽  
Myroslav Kabal ◽  
...  

The use of natural regeneration techniques is one of the key elements of modern (close-to-nature) forestry. In natural forests, changes in canopy cover, such as the emergence and successive re-closure of canopy gaps are particularly important, as they influence the light availability on the forest floor. Creating canopy gaps of different size is a promising silvicultural tool allowing the regulation of the light availability in managed forests in order to control regeneration composition and development. In this study, we used terrestrial laser scanning data to investigate the relationship between canopy-gap dimensions and emerging natural regeneration along a gradient of management in forests dominated by European beech (Fagus sylvatica, L.). We analyzed the spatial distribution and height of regeneration patches in dependence of gap characteristics. Mean regeneration height decreases progressively from the gap polygon over a transition zone towards the area under the canopy, while the tallest regeneration plants were placed in positions midway between center and gap edge, and not directly in the gap center as we initially assumed. The centers of regeneration patches were not displaced when compared to the associated canopy gap centers, as has been reported in other studies conducted on the northern hemisphere for various tree species. The observed patterns did not depend on management strategies, indicating that regeneration responded equally to naturally created gaps and gaps that were caused by logging. We conclude that establishment and development of shade-tolerant European beech regeneration in forest stands is driven by gap openings, but not necessarily direct radiation. If at all, pronounced direct radiation mainly occurs at the northern edge of large gaps. Neither regeneration patch center, nor regeneration tree height pointed in that direction. Our study suggests that in the investigated beech-dominated forests the effect of increased light availability at the northern edge of a gap is overruled by other factors increasing towards the gap edge, such as increased belowground competition of the overstory trees.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.


2019 ◽  
Vol 10 ◽  
Author(s):  
Lazar Pavlović ◽  
Dejan Stojanović ◽  
Emina Mladenović ◽  
Milena Lakićević ◽  
Saša Orlović

2007 ◽  
Vol 298 (1-2) ◽  
pp. 69-79 ◽  
Author(s):  
Anika K. Richter ◽  
Lorenz Walthert ◽  
Emmanuel Frossard ◽  
Ivano Brunner

Trees ◽  
2018 ◽  
Vol 33 (2) ◽  
pp. 333-344 ◽  
Author(s):  
Estelle Noyer ◽  
François Ningre ◽  
Jana Dlouhá ◽  
Mériem Fournier ◽  
Catherine Collet

Sign in / Sign up

Export Citation Format

Share Document