scholarly journals Reactive oxygen species and oocyte aging: Role of superoxide, hydrogen peroxide, and hypochlorous acid

2008 ◽  
Vol 44 (7) ◽  
pp. 1295-1304 ◽  
Author(s):  
Anuradha P. Goud ◽  
Pravin T. Goud ◽  
Michael P. Diamond ◽  
Bernard Gonik ◽  
Husam M. Abu-Soud
Planta ◽  
2009 ◽  
Vol 231 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Ladislav Tamás ◽  
Igor Mistrík ◽  
Jana Huttová ◽  
L’ubica Halušková ◽  
Katarína Valentovičová ◽  
...  

Pteridines ◽  
2002 ◽  
Vol 13 (4) ◽  
pp. 140-143 ◽  
Author(s):  
Günter Weiss ◽  
Antonio Diez-Ruiz ◽  
Christian Murr ◽  
Igor Theur ◽  
Dietmar Fuchs

Abstract Upon stimulation with interferon-γ, a typical Thl cell-derived cytokine, human monocyte-dertved macrophages produce neopterin derivatives and in parallel degrade the essential amino acid L-tryptophan to L-kynurenine and subsequently to 3-hydroxyanthramlic acid and anthramlic acid. In parallel, stimulated macrophages produce reactive oxygen species such as hydrogen peroxide and hypochlorous acid. Earlier, neopterin and 7.8-dihydroneoptenn were found to enhance or decrease effects of reactive oxygen species in vitro, depending on concentration and on environmental condition. In this study, we investigated the ability of tryptophan and its metabolites to interfere with radicals in vitro by means of a chemiluminiseence-based assay system. When using hydrogen peroxide or chloramine Τ as source for radical formation. L-tryptophan and its catabolites reduced chennluminescence according to a dose-response relationship, 3-hydroxvanthranilic acid being the most efficient compound. Apart from L-kynurenme the scavenging effects of tryptophan and its metabolites were not affected by changes m pH from 5.5 to 7.5. Our data indicate that tryptophan degradation produces metabolites with a high scavenging ability for reactive oxygen and chlorine species, thereby establishing a self-regulatory mechanism to limit the tissue damage by reactive radicals produced by macrophages.


2018 ◽  
Vol 115 (30) ◽  
pp. 7765-7770 ◽  
Author(s):  
Wei Li ◽  
Jessica F. Young ◽  
Jianjun Sun

Ovarian reactive oxygen species (ROS) are believed to regulate ovulation in mammals, but the details of ROS production in follicles and the role of ROS in ovulation in other species remain underexplored. In Drosophila ovulation, matrix metalloproteinase 2 (MMP2) is required for follicle rupture by degradation of posterior follicle cells surrounding a mature oocyte. We recently demonstrated that MMP2 activation and follicle rupture are regulated by the neuronal hormone octopamine (OA) and the octopamine receptor in mushroom body (OAMB). In the current study, we investigated the role of the superoxide-generating enzyme NADPH oxidase (NOX) in Drosophila ovulation. We report that Nox is highly enriched in mature follicle cells and that Nox knockdown in these cells leads to a reduction in superoxide and to defective ovulation. Similar to MMP2 activation, NOX enzymatic activity is also controlled by the OA/OAMB-Ca2+ signaling pathway. In addition, we report that extracellular superoxide dismutase 3 (SOD3) is required to convert superoxide to hydrogen peroxide, which acts as the key signaling molecule for follicle rupture, independent of MMP2 activation. Given that Nox homologs are expressed in mammalian follicles, the NOX-dependent hydrogen peroxide signaling pathway that we describe could play a conserved role in regulating ovulation in other species.


Reproduction ◽  
2020 ◽  
Vol 159 (4) ◽  
pp. 423-436 ◽  
Author(s):  
Ayelen Moreno-Irusta ◽  
Esteban M Dominguez ◽  
Clara I Marín-Briggiler ◽  
Arturo Matamoros-Volante ◽  
Ornella Lucchesi ◽  
...  

Sperm chemotaxis may facilitate the finding of the oocyte. Only capacitated spermatozoa can orient their movement by chemotaxis, which as well as capacitation, is regulated in part by the cAMP-PKA pathway. Reactive oxygen species (ROS) are produced during sperm capacitation which is closely related to chemotaxis. Then, the ROS participation in the chemotactic signaling can be expected. Here we studied the role of ROS in the chemotaxis signaling of equine spermatozoa which produce high quantities of ROS because of their energy metabolism. The level of capacitated and chemotactic spermatozoa was increased with 0.1 and 0.2 mM hydrogen peroxide (H2O2), which was involved in the chemotactic signaling. By combining a concentration gradient of H2O2 with inhibitors/chelators of some of the signaling pathway elements, we showed that the activation of NOX (membrane NADPH oxidase) increases the intracellular ROS which activate the chemotaxis AMPc-PKA pathway. Our results provide evidence about the participation of ROS in the chemotactic signaling mediated by progesterone (P).


2021 ◽  
Author(s):  
Maria M. Borisova-Mubarakshina ◽  
Ilya A. Naydov ◽  
Daria V. Vetoshkina ◽  
Marina A. Kozuleva ◽  
Daria V. Vilyanen ◽  
...  

The present chapter describes the mechanisms of reactive oxygen species formation in photosynthetic reactions and the functional significance of reactive oxygen species as signal messengers in photosynthetic cells of plants. Attention is given to the acclimation mechanisms of higher plants to abiotic and biotic factors such as increased light, drought, soil salinity and colonization of plants by rhizosphere microorganisms. Special attention is paid to the reactions of reactive oxygen species with the components of the chloroplasts plastoquinone pool leading to production of hydrogen peroxide as a signal molecule, which is involved in acclimation of plants to these stress conditions. The chapter also presents the data demonstrating that regulation of the size of the light-harvesting antenna of photosystem II is one of the universal mechanisms of the structural and functional reorganization of the photosynthetic apparatus of higher plants exposed to the abiotic and biotic factors. These data were obtained for both model Arabidopsis (Arabidopsis thaliana) plants as well as for agricultural barley (Hordeum vulgare) plants. It is hypothesized that hydrogen peroxide, produced with involvement of the plastoquinone pool components, plays the role of a signaling molecule for regulation of the photosystem II antenna size in higher plants when environmental conditions change.


2015 ◽  
Vol 197 (11) ◽  
pp. 1963-1971 ◽  
Author(s):  
Martha Gómez-Marroquín ◽  
Luz E. Vidales ◽  
Bernardo N. Debora ◽  
Fernando Santos-Escobar ◽  
Armando Obregón-Herrera ◽  
...  

ABSTRACTReactive oxygen species (ROS) promote the synthesis of the DNA lesion 8-oxo-G, whose mutagenic effects are counteracted in distinct organisms by the DNA glycosylase MutM. We report here that inBacillus subtilis,mutMis expressed during the exponential and stationary phases of growth. In agreement with this expression pattern, results of a Western blot analysis confirmed the presence of MutM in both stages of growth. In comparison with cells of a wild-type strain, cells ofB. subtilislacking MutM increased their spontaneous mutation frequency to Rifrand were more sensitive to the ROS promoter agents hydrogen peroxide and 1,1′-dimethyl-4,4′-bipyridinium dichloride (Paraquat). However, despite MutM's proven participation in preventing ROS-induced-DNA damage, the expression ofmutMwas not induced by hydrogen peroxide, mitomycin C, or NaCl, suggesting that transcription of this gene is not under the control of the RecA, PerR, or σBregulons. Finally, the role of MutM in stationary-phase-associated mutagenesis (SPM) was investigated in the strainB. subtilisYB955 (hisC952 metB5 leuC427). Results revealed that under limiting growth conditions, amutMknockout strain significantly increased the amount of stationary-phase-associatedhis,met, andleurevertants produced. In summary, our results support the notion that the absence of MutM promotes mutagenesis that allows nutritionally stressedB. subtiliscells to escape from growth-limiting conditions.IMPORTANCEThe present study describes the role played by a DNA repair protein (MutM) in protecting the soil bacteriumBacillus subtilisfrom the genotoxic effects induced by reactive oxygen species (ROS) promoter agents. Moreover, it reveals that the genetic inactivation ofmutMallows nutritionally stressed bacteria to escape from growth-limiting conditions, putatively by a mechanism that involves the accumulation and error-prone processing of oxidized DNA bases.


Sign in / Sign up

Export Citation Format

Share Document