scholarly journals Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species

2011 ◽  
Vol 50 (5) ◽  
pp. 609-616 ◽  
Author(s):  
Charles Affourtit ◽  
Martin Jastroch ◽  
Martin D. Brand
Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3040-3048 ◽  
Author(s):  
Jingbo Pi ◽  
Yushi Bai ◽  
Kiefer W. Daniel ◽  
Dianxin Liu ◽  
Otis Lyght ◽  
...  

Uncoupling protein (UCP) 2 is a widely expressed mitochondrial protein whose precise function is still unclear but has been linked to mitochondria-derived reactive oxygen species production. Thus, the chronic absence of UCP2 has the potential to promote persistent reactive oxygen species accumulation and an oxidative stress response. Here, we show that Ucp2−/− mice on three highly congenic (N >10) strain backgrounds (C57BL/6J, A/J, 129/SvImJ), including two independently generated sources of Ucp2-null animals, all exhibit increased oxidative stress. Ucp2-null animals exhibit a decreased ratio of reduced glutathione to its oxidized form in blood and tissues that normally express UCP2, including pancreatic islets. Islets from Ucp2−/− mice exhibit elevated levels of numerous antioxidant enzymes, increased nitrotyrosine and F4/80 staining, but no change in insulin content. Contrary to results in Ucp2−/− mice of mixed 129/B6 strain background, glucose-stimulated insulin secretion in Ucp2−/− islets of each congenic strain was significantly decreased. These data show that the chronic absence of UCP2 causes oxidative stress, including in islets, and is accompanied by impaired glucose-stimulated insulin secretion.


2009 ◽  
Vol 203 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Simon C Lee ◽  
Christine A Robson-Doucette ◽  
Michael B Wheeler

Currently, the physiological function of uncoupling protein-2 (UCP2) in pancreatic islets and its role in the development of diabetes is a matter of great debate. To further investigate the impact of UCP2 on diabetes development, we used streptozotocin (STZ) to experimentally generate diabetes in both wild-type (WT) and UCP2-knockout (UCP2KO) mice. While multiple low-dose STZ injections led to hyperglycemia development over a 14-day period in both WT and UCP2KO mice, we found the development of hyperglycemia to be significantly less severe in the UCP2KO mice. Measurement of insulin and glucagon secretion (in vitro), as well as their plasma concentrations (in vivo), indicated that UCP2-deficiency showed enhanced insulin secretion but impaired α-cell function. Glucagon secretion was attenuated, despite reduced insulin secretion after exposure to STZ, which together contributed to less severe hyperglycemia development in UCP2KO mice. Further experimentation revealed that UCP2-deficient α- and β-cells had chronically higher cellular reactive oxygen species (ROS) levels than the WT prior to STZ application, which correlated with increased basal β- and α-cell mass. Overall, we suggest that increased chronic ROS signaling as a result of UCP2-deficiency contributes to enhanced β-cell function and impairment of α-cell function, leading to an attenuation of STZ-induced hyperglycemia development.


Sign in / Sign up

Export Citation Format

Share Document