Novel molecular insights into the function and the antioxidative stress response of a Peroxiredoxin Q protein from cyanobacteria

2017 ◽  
Vol 106 ◽  
pp. 278-287 ◽  
Author(s):  
Vijay Tailor ◽  
Anand Ballal
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Darío Ortiz de Orué Lucana ◽  
Ina Wedderhoff ◽  
Matthew R. Groves

Bacteria are permanently in contact with reactive oxygen species (ROS), both over the course of their life cycle as well that present in their environment. These species cause damage to proteins, lipids, and nucleotides, negatively impacting the organism. To detect these ROS molecules and to stimulate the expression of proteins involved in antioxidative stress response, bacteria use a number of different protein-based regulatory and sensory systems. ROS-based stress detection mechanisms induce posttranslational modifications, resulting in overall conformational and structural changes within sensory proteins. The subsequent structural rearrangements result in changes of protein activity, which lead to regulated and appropriate response on the transcriptional level. Many bacterial enzymes and regulatory proteins possess a conserved signature, the zinc-containing redox centre Cys-X-X-Cys in which a disulfide bridge is formed upon oxidative stress. Other metal-dependent oxidative modifications of amino acid side-chains (dityrosines, 2-oxo-histidines, or carbonylation) also modulate the activity of redox-sensitive proteins. Using molecular biology, biochemistry, biophysical, and structure biology tools, molecular mechanisms involved in sensing and response to oxidative stress have been elucidated in detail. In this review, we analyze some examples of bacterial redox-sensing proteins involved in antioxidative stress response and focus further on the currently known molecular mechanism of function.


2007 ◽  
Vol 282 (38) ◽  
pp. 27792-27801 ◽  
Author(s):  
Masahiro Wakita ◽  
Shinji Masuda ◽  
Ken Motohashi ◽  
Toru Hisabori ◽  
Hiroyuki Ohta ◽  
...  

Two peroxiredoxins, classified as Type II and PrxQ, were characterized in the purple non-sulfur photosynthetic bacterium Rhodobacter sphaeroides. Both recombinant proteins showed remarkable thioredoxin-dependent peroxidase activity with broad substrate specificity in vitro. Nevertheless, PrxQ of R. sphaeroides, unlike typical PrxQs studied to date, does not contain one of the two conserved catalytic Cys residues. We found that R. sphaeroides PrxQ and other PrxQ-like proteins from several organisms conserve a different second Cys residue, indicating that these proteins should be categorized into a novel PrxQ subfamily. Disruption of either the Type II or PrxQ gene in R. sphaeroides had a dramatic effect on cell viability when the cells were grown under aerobic light or oxidative stress conditions created by exogenous addition of reactive oxygen species to the medium. Growth rates of the mutants were significantly decreased compared with that of wild type under aerobic but not anaerobic conditions. These results indicate that the peroxiredoxins are crucial for antioxidative stress response in this bacterium. The gene disruptants also demonstrated reduced levels of photopigment synthesis, suggesting that the peroxiredoxins are directly or indirectly involved in regulated synthesis of the photosynthetic apparatus.


2015 ◽  
Vol 22 (23) ◽  
pp. 18495-18507 ◽  
Author(s):  
Michael Obermeier ◽  
Christian A. Schröder ◽  
Brigitte Helmreich ◽  
Peter Schröder

2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


Sign in / Sign up

Export Citation Format

Share Document