5,5-Dimethyl-1-pyrroline N -oxide Modulates Transcriptome and Interactome Towards Dampening Innate Immune Response in RAW 264.7 cells

2017 ◽  
Vol 112 ◽  
pp. 209
Author(s):  
Marcos D Muñoz ◽  
Sandra E Gomez Mejiba ◽  
Sergio E Alvarez ◽  
Dario C Ramirez
2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Talib Alboslemy ◽  
Bing Yu ◽  
Tara Rogers ◽  
Min-Ho Kim

ABSTRACT Staphylococcus aureus infections associated with the formation of biofilms on medical implants or host tissue play a critical role in the persistence of chronic infections. One critical mechanism of biofilm infection that leads to persistent infection lies in the capacity of biofilms to evade the macrophage-mediated innate immune response. It is now increasingly apparent that microorganisms exploit the negative regulatory mechanisms of the pattern recognition receptor (PRR)-mediated inflammatory response to subvert host cell functions by using various virulence factors. However, the detailed molecular mechanism, along with the identity of a target molecule, underlying the evasion of the macrophage-mediated innate immune response against S. aureus infection associated with biofilm formation remains to be elucidated. Here, using an in vitro culture model of murine macrophage-like RAW 264.7 cells, we demonstrate that S. aureus biofilm-conditioned medium significantly attenuated the capacity for macrophage bactericidal and proinflammatory responses. Importantly, the responses were associated with attenuated activation of NF-κB and increased expression of Kruppel-like factor 2 (KLF2) in RAW 264.7 cells. Small interfering RNA (siRNA)-mediated silencing of KLF2 in RAW 264.7 cells could restore the activation of NF-κB toward the bactericidal activity and generation of proinflammatory cytokines in the presence of S. aureus biofilm-conditioned medium. Collectively, our results suggest that factors secreted from S. aureus biofilms might exploit the KLF2-dependent negative regulatory mechanism to subvert macrophage-mediated innate immune defense against S. aureus biofilms.


2020 ◽  
Author(s):  
KO West ◽  
AR Wagner ◽  
HM Scott ◽  
KJ Vail ◽  
K Carter ◽  
...  

ABSTRACTWhile the signaling cascades and transcription factors that activate gene expression in macrophages following pattern recognition receptor engagement are well known, the role of post-transcriptional RNA processing in modulating innate immune gene expression remains understudied. Recent phosphoproteomics analyses revealed that members of the SR and hnRNP families of splicing regulatory proteins undergo dynamic post-translational modification in infected macrophages. To begin to test if these splicing factors play a privileged role in controlling the innate immune transcriptome, we analyzed steady state gene expression and alternatively spliced isoform production in ten SR/hnRNP knockdown RAW 264.7 macrophage cell lines following infection with the bacterial pathogen Salmonella enterica serovar Typhimurium (Salmonella). We observed that thousands of genes were up or downregulated in SR/hnRNP knockdown cells and differentially expressed genes (DEGs) varied significantly depending on the SR/hnRNP examined. We discovered that a subset of critical innate immune genes (Nos2, Mx1, Il1a) rely heavily on SR/hnRNPs for proper induction and/or repression, while others (Tnf, Il1b) are generally unaffected by splicing factor knockdown. We also discovered that many key immune sensors and signaling molecules are subject to regulation by alternative splicing. While our data does not provide evidence for positive correlation between a transcripts’ reliance of SR/hnRNPs for proper expression and the gene’s induction level, length, or intron/exon architecture, we found that many rapidly induced primary response genes are repressed by SR/hnRNPs. Consistent with SR/hnRNP proteins contributing to innate immune outcomes, knockdown of hnRNP K and U significantly enhanced the ability of RAW 264.7 macrophages to control viral replication. Based on these collective findings, we conclude that many innate immune genes have evolved to rely on one or more splicing regulatory factors to ensure the proper timing and magnitude of their induction, supporting a model wherein pre-splicing is a critical regulatory node in the innate immune response.


2021 ◽  
Vol 32 (1) ◽  
pp. 606-624
Author(s):  
Xifeng Qiao ◽  
Pingchao Li ◽  
Haoran Lin ◽  
Yong Zhang ◽  
Ying Zhu ◽  
...  

2018 ◽  
Vol 64 (2) ◽  
pp. 155-166 ◽  
Author(s):  
Xiaoying Zhi ◽  
Jianliang Lv ◽  
Yanquan Wei ◽  
Ping Du ◽  
Yanyan Chang ◽  
...  

The innate immune system acts as the first line of defense against invasion by bacterial and viral pathogens. The role of macrophages in innate immune responses to foot-and-mouth disease virus (FMDV) is poorly understood. To determine the mechanism underlying activation of innate immunity after FMDV infection in macrophages, we performed FMDV infection in mouse macrophage RAW 264.7 cells and found that FMDV serotype O infection induced a cytopathic effect. We then evaluated the gene expression profile in macrophage RAW 264.7 cells after FMDV infection using systematic microarray analysis. Gene ontology annotation and enrichment analysis revealed that FMDV promoted expression in a group of genes that are enriched in innate immune response and inflammatory response processes. Further research demonstrated that FMDV serotype O infection enhanced NF-κB, Toll-like, and RIG-I-like receptor signaling pathways and proteins expression and increased transcription and expression of a series of cytokines and interferons, as proved by qRT-PCR, Western blot, ELISA, and dual-luciferase reporter assay. Our study concluded that FMDV infection triggers the innate immune response in macrophages after activation of multiple innate immune pathway receptors and proteins by FMDV serotype O, resulting in activation and secretion of a series of cytokines and interferons.


2015 ◽  
Vol 29 (3) ◽  
pp. 119-129 ◽  
Author(s):  
Richard J. Stevenson ◽  
Deborah Hodgson ◽  
Megan J. Oaten ◽  
Luba Sominsky ◽  
Mehmet Mahmut ◽  
...  

Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.


Pneumologie ◽  
2013 ◽  
Vol 67 (S 01) ◽  
Author(s):  
P Pfeifer ◽  
M Voss ◽  
B Wonnenberg ◽  
M Bischoff ◽  
F Langer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document