Age-related changes in antioxidant defence system of Wistar rats brain

2021 ◽  
Vol 177 ◽  
pp. S130
Author(s):  
Tamara Popović ◽  
Jasmina Debeljak Martačić ◽  
Marija Glibetić ◽  
Silvio de Luka ◽  
Aleksander Trbovich
2014 ◽  
Vol 37 (3) ◽  
pp. 1202-1211 ◽  
Author(s):  
Temidayo O. Omobowale ◽  
Ademola A. Oyagbemi ◽  
Akinleye S. Akinrinde ◽  
Adebowale B. Saba ◽  
Oluwabusola T. Daramola ◽  
...  

Author(s):  
Augustine Apiamu ◽  
Samuel Ogheneovo Asagba ◽  
Nyerhovwo J. Tonukari

Abstract Background Cadmium (Cd) toxicity, which runs across the food chain, is chiefly regulated by in vivo antioxidant defence system or through antioxidant supplementation of biological systems predisposed to this environmental stressor. The present study was designed to examine the role of Anthocleista vogelii leaves in Cd-induced oxidative stress in the serum of Wistar rats through the application of response surface methodology (RSM) and biomonitoring of selective responses: malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione-s-transferase (GST) and peroxidase (POD) activities, respectively. The cold macerated plant leaves were subjected to fractionation process using methanol-hexane-chloroform (3:2:1 v/v) solvent system such that n-hexane fraction with ample antioxidant levels in terms of total phenolic content (TPC) and total flavonoid content (TFC) among others at p <  0.05 was selected for the study. The study employed central composite design (CCD) with twenty experimental “runs” of male Wistar rats for twenty-eight days, following a week of acclimatization, where n-hexane fraction of A. vogelii (NFAV), cadmium chloride (CdCl2) and body weights of rats were considered input factors in the study. Results The study generated five quadratic models, which differed significantly at p <  0.05 for MDA levels as well as CAT, SOD, GST and POD activities in the sera of Wistar rats. The study revealed that exposure to Cd toxicity caused a marked increase (p <  0.05) in serum MDA levels, but a significant inhibition (p <  0.05) of serum SOD, CAT, GST and POD activities. However, Cd interaction with NFAV showed marked amelioration of Cd-induced oxidative stress, which was confirmed by significant decrease in serum MDA levels, but significant increase in serum SOD, CAT, GST and POD activities at p <  0.05 via the response surface plots. The study also confirmed the reliability and adequacy of the models for accurate prediction of the responses since R-squared (R2) values obtained were greater than 90%. Conclusion It was inferred from the present study that the adequacy of the models validated the potency of A. vogelii leaves graphically in the amelioration of Cd-induced oxidative stress in the serum of Wistar rats. Hence, the plant was considered a rich source of bioactive compounds with significant antioxidant properties.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Maria Murta Santi ◽  
Paula Alves Silva ◽  
Isabella Fernandes Martins Santos ◽  
Silvane Maria Fonseca Murta

Abstract Background Superoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide. As iron (Fe) SOD is absent in the human host, this enzyme is a promising molecular target for drug development against trypanosomatids. Results We obtained Leishmania infantum mutant clones with lower FeSOD-A expression and investigated their phenotypes. Our attempts to delete this enzyme-coding gene using three different methodologies (conventional allelic replacement or two different CRISPR/methods) failed, as FeSOD-A gene copies were probably retained by aneuploidy or gene amplification. Promastigote forms of WT and mutant parasites were used in quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot analyses, and these parasite forms were also used to assess drug susceptibility. RT-qPCR and western blot analyses revealed that FeSOD-A transcript and protein levels were lower in FeSOD-A−/−/+L. infantum mutant clones than in the wild-type (WT) parasite. The decrease in FeSOD-A expression in L. infantum did not interfere with the parasite growth or susceptibility to amphotericin B. Surprisingly, FeSOD-A−/−/+L. infantum mutant clones were 1.5- to 2.0-fold more resistant to trivalent antimony and 2.4- to 2.7-fold more resistant to miltefosine. To investigate whether the decrease in FeSOD-A expression was compensated by other enzymes, the transcript levels of five FeSODs and six enzymes from the antioxidant defence system were assessed by RT-qPCR. The transcript level of the enzyme ascorbate peroxidase increased in both the FeSOD-A−/−/+ mutants tested. The FeSOD-A−/−/+ mutant parasites were 1.4- to 1.75-fold less tolerant to oxidative stress generated by menadione. Infection analysis using THP-1 macrophages showed that 72 h post-infection, the number of infected macrophages and their intracellular multiplication rate were lower in the FeSOD-A−/−/+ mutant clones than in the WT parasite. Conclusions The unsuccessful attempts to delete FeSOD-A suggest that this gene is essential in L. infantum. This enzyme plays an important role in the defence against oxidative stress and infectivity in THP-1 macrophages. FeSOD-A-deficient L. infantum parasites deregulate their metabolic pathways related to antimony and miltefosine resistance. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document