scholarly journals Robust Malware Detection Models: Learning from Adversarial Attacks and Defenses

2021 ◽  
Vol 37 ◽  
pp. 301183
Author(s):  
Hemant Rathore ◽  
Adithya Samavedhi ◽  
Sanjay K. Sahay ◽  
Mohit Sewak
2018 ◽  
Vol 73 ◽  
pp. 326-344 ◽  
Author(s):  
Sen Chen ◽  
Minhui Xue ◽  
Lingling Fan ◽  
Shuang Hao ◽  
Lihua Xu ◽  
...  

Author(s):  
Teenu S. John ◽  
Tony Thomas

Machine learning has found its immense application in various cybersecurity domains owing to its automated threat prediction and detection capabilities. Despite its advantages, attackers can utilize the vulnerabilities of machine learning models for degrading its performance. These attacks called adversarial attacks can perturb the features of the data to induce misclassification. Adversarial attacks are highly destructive in the case of malware detection classifiers, causing a harmful virus or trojan to evade the threat detection system. The feature perturbations carried out by an adversary against malware detection classifiers are different from the conventional attack strategies employed by an adversary against computer vision tasks. This chapter discusses various adversarial attacks launched against malware detection classifiers and the existing defensive mechanisms. The authors also discuss the challenges and the research directions that need to be addressed to develop effective defensive mechanisms against these attacks.


2023 ◽  
Vol 55 (1) ◽  
pp. 1-35
Author(s):  
Deqiang Li ◽  
Qianmu Li ◽  
Yanfang (Fanny) Ye ◽  
Shouhuai Xu

Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML is vulnerable to attacks known as adversarial examples. In this article, we survey and systematize the field of Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions, attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial order structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We draw a number of insights, including: knowing the defender’s feature set is critical to the success of transfer attacks; the effectiveness of practical evasion attacks largely depends on the attacker’s freedom in conducting manipulations in the problem space; knowing the attacker’s manipulation set is critical to the defender’s success; and the effectiveness of adversarial training depends on the defender’s capability in identifying the most powerful attack. We also discuss a number of future research directions.


2018 ◽  
Vol 6 (12) ◽  
pp. 879-887
Author(s):  
Om Prakash Samantray ◽  
Satya Narayana Tripathy ◽  
Susant Kumar Das

2011 ◽  
Vol 31 (4) ◽  
pp. 1006-1009
Author(s):  
Ning GUO ◽  
Xiao-yan SUN ◽  
He LIN ◽  
Hua MOU

2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.


Sign in / Sign up

Export Citation Format

Share Document