Comparative performance and emissions of IDI-turbo automobile diesel engine operated using degummed, deacidified mixed crude palm oil–diesel blends

Fuel ◽  
2011 ◽  
Vol 90 (4) ◽  
pp. 1487-1491 ◽  
Author(s):  
T. Leevijit ◽  
G. Prateepchaikul
Author(s):  
Arif Fahim Ezzat Chan ◽  
Wira Jazair Yahya ◽  
Hasannuddin Abd Kadir ◽  
Nik Rosli Abdullah ◽  
Ahmad Muhsin Ithnin ◽  
...  

2015 ◽  
Vol 37 (5) ◽  
pp. 495-500 ◽  
Author(s):  
B. Deepanraj ◽  
P. Lawrence ◽  
R. Sivashankar ◽  
V. Sivasubramanian

Author(s):  
S Bari ◽  
C W Yu ◽  
T H Lim

Short-term performance tests using crude palm oil (CPO) as fuel for a diesel engine showed CPO to be a suitable substitute, with a peak pressure about 5 per cent higher and an ignition delay about 3° shorter compared with diesel. Emissions of NO and CO were about 29 and 9 per cent higher respectively for CPO. However, prolonged use of CPO as fuel caused the engine performance to deteriorate. After 500 h cumulative running with CPO, the maximum power was reduced by about 20 per cent and the minimum brake specific fuel consumption (b.s.f.c.) was increased by about 26 per cent. Examination of the different parts after the engine was dismantled revealed heavy carbon deposits in the combustion chamber; traces of wear on the piston rings, the plunger and the delivery valve of the injection pump; slight scuffing of the cylinder liner; and uneven spray from the nozzles. The affected parts were installed in a new identical engine one by one to evaluate the performance of each respectively. Tests revealed that the main reason for engine performance deterioration was ‘valve sticking’, caused by carbon deposits on the valve seats and stems. This resulted in leakage during the compression and power strokes and a reduced effective compression ratio and subsequently affected the power and fuel economy. Valve sticking alone contributed about 18 and 23 per cent to the deterioration in maximum power and minimum b.s.f.c. respectively.


2021 ◽  
Vol 11 (23) ◽  
pp. 11502
Author(s):  
Jun Cong Ge ◽  
Sam Ki Yoon ◽  
Jun Hee Song

Vegetable oil as an alternative fuel for diesel engine has attracted much attention all over the world, and it is also expected to achieve the goal of global carbon neutrality in the future. Although the product after transesterification, biodiesel, can greatly reduce the viscosity compared with vegetable oil, the high production cost is one of the reasons for restricting its extensive development. In addition, based on the current research on biodiesel in diesel engines, it has been almost thoroughly investigated. Therefore, in this study, crude palm oil (CPO) was directly used as an alternative fuel to be blended with commercial diesel. The combustion, engine performance and emissions were investigated on a 4-cylinder, turbocharged, common rail direct injection (CRDI) diesel engine fueled with different diesel-CPO blends according to various engine loads. The results show that adding CPO to diesel reduces the maximum in-cylinder pressure and maximum heat release rate to 30 Nm and 60 Nm. The most noteworthy finding is that the blend fuels reduce the emissions of hydrocarbons (HC), nitrogen oxides (NOx) and smoke, simultaneously. On the whole, diesel fuel blended with 30% CPO by volume is the best mixing ratio based on engine performance and emission characteristics.


2019 ◽  
Vol 42 ◽  
pp. e43882
Author(s):  
Omar Seye ◽  
Rubem Cesar Rodrigues Souza ◽  
Ramon Eduardo Pereira Silva ◽  
Robson Leal da Silva

This paper evaluates internal combustion engine performance parameters (Specific Fuel Consumption and engine torque) and pollutant emissions (O2, CO, and NOX), and also, provide an assessment of economic viability for operation in Amazonas state. Power supply to the communities in the Amazon region has as characteristics high costs for energy generation and low fare. Extractive activities include plenty of oily plant species, with potential use as biofuel for ICE (Diesel cycle) to obtain power generation together with pollutant emission reduction in comparison to fossil fuel. Experimental tests were carried out with five fuel blends (crude palm oil) and diesel, at constant angular speed (2,500 RPM – stationary regime), and four nominal engine loads (0%, 50%, 75%, and 100%) in a test bench dynamometer for an engine-driven generator for electrical-power, 4-Stroke internal combustion engine, Diesel cycle. Main conclusions are: a) SFC and torque are at the same order of magnitude for PO-00 (diesel) and PO-xx at BHP50/75/100%; b) O2 emissions show consistent decreasing behavior as BHP increases, compatible to a rich air-fuel ratio (λ > 1) and, at the same BHP condition, O2 (%) is slightly lower for higher PO-xx content; c) The CO emissions for PO-00 consistently decrease while the BHP increases, as for PO-xx those values present a non-linear behavior; at BHP75%-100_loads, CO emissions are higher for PO-20 and PO-25 in comparison to PO-00; d) The overall trend for NOX emissions is to increase, the higher the BHP; In general, NOx emissions are lower for PO-xx in comparison to PO-00, except for PO-10 which presents slightly higher values than PO-00 for all BHP range; e) Assessment on-trend costs indicates that using palm oil blends for Diesel engine-driven generators in the Amazon region is economically feasible, with an appropriate recommendation for a rated power higher than 800 kW.


2013 ◽  
Vol 446-447 ◽  
pp. 1523-1527
Author(s):  
Krit Somnuk ◽  
Gumpon Prateepchaikul

Free fatty acid (FFA) in mixed crude palm oil (MCPO) must be reduced to less than 1 wt.% or 2 mgKOH.g-1of acid value by the acid-catalyzed esterification process when the base-catalyzed transesterification was used to produce the biodiesel for the two-stage process. This study was to investigate the effects of acid catalyst types: sulfuric acid (H2SO4), phosphoric acid (H3PO4), and hydrochloric acid (HCL) at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 vol.% of acid catalyst concentration on the reduction of acid value in MCPO by the continuous static mixer. Results indicated that H2SO4has the most significant variable affecting the acid value in MCPO. The acid catalyst concentration of 1.0 and 1.5 vol.% H2SO4can reduce the acid value to less than 2 mgKOH.g-1with 15 vol.% of methanol and 5-meter in the length of static mixer, while both H3PO4and HCL could not reduce the acid value was reduced to less than 2 mgKOH.g-1. Moreover, the results clearly indicated that HCL has the lowest significance effect on the acid value reduction in MCPO by the esterification reaction.


Sign in / Sign up

Export Citation Format

Share Document