Ignition delay times of very-low-vapor-pressure biodiesel surrogates behind reflected shock waves

Fuel ◽  
2014 ◽  
Vol 126 ◽  
pp. 271-281 ◽  
Author(s):  
Matthew F. Campbell ◽  
David F. Davidson ◽  
Ronald K. Hanson
Shock Waves ◽  
2002 ◽  
Vol 11 (4) ◽  
pp. 309-322 ◽  
Author(s):  
N. Lamoureux ◽  
C.-E. Paillard ◽  
V. Vaslier

Author(s):  
K. Ikeda ◽  
J.C. Mackie

Ignition delay times have been measured behind reflected shock waves in ethane-oxygen-argon mixtures at temperatures between 1150 and 1500 K and pre-ignition pressures between 10 and 14 atm. Delay times have been measured both by pressure rise and OH absorption at 307 nm. Kinetic modelling of the ignition delays has been made using the GRIMech 3.0 mechanism which with addition of several reactions involving HO


2015 ◽  
Vol 35 (1) ◽  
pp. 241-248 ◽  
Author(s):  
Yangye Zhu ◽  
Sijie Li ◽  
David F. Davidson ◽  
Ronald K. Hanson

2013 ◽  
Vol 34 (1) ◽  
pp. 419-425 ◽  
Author(s):  
M.F. Campbell ◽  
D.F. Davidson ◽  
R.K. Hanson ◽  
C.K. Westbrook

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 683
Author(s):  
Erwei Liu ◽  
Qin Liao ◽  
Shengli Xu

An aerosol shock tube has been developed for measuring the ignition delay times (tig) of aerosol mixtures of low-vapor-pressure fuels and for visualization of the auto-ignition flow-field. The aerosol mixture was formed in a premixing tank through an atomizing nozzle. Condensation and adsorption of suspended droplets were not observed significantly in the premixing tank and test section. A particle size analyzer was used to measure the Sauter mean diameter (SMD) of the aerosol droplets. Three pressure sensors and a photomultiplier were used to detect local pressure and OH emission respectively. Intensified charge-coupled device cameras were used to capture sequential images of the auto-ignition flow-field. The results indicated that stable and uniform aerosol could be obtained by this kind of atomizing method and gas distribution system. The averaged SMD for droplets of toluene ranged from 2 to 5 μ m at pressures of 0.14–0.19 MPa of dilute gases. In the case of a stoichiometric mixture of toluene/O2/N2, ignition delay times ranged from 77 to 1330 μs at pressures of 0.1–0.3 MPa, temperatures of 1432–1716 K and equivalence ratios of 0.5–1.5. The logarithm of ignition delay times was approximately linearly correlated to 1000/T. In contrast to the reference data, ignition delay times of aerosol toluene/O2/N2 were generally larger. Sequential images of auto-ignition flow-field showed the features of flame from generation to propagation.


2012 ◽  
Vol 159 (2) ◽  
pp. 552-561 ◽  
Author(s):  
Daniel R. Haylett ◽  
David F. Davidson ◽  
Ronald K. Hanson

Author(s):  
Thoralf G. Reichel ◽  
Bernhard C. Bobusch ◽  
Christian Oliver Paschereit ◽  
Jan-Simon Schäpel ◽  
Rudibert King ◽  
...  

Approximate constant volume combustion (aCVC) is a promising way to achieve a step change in the efficiency of gas turbines. This work investigates a recently proposed approach to implement aCVC in a gas turbine combustion system: shockless explosion combustion (SEC). The new concept overcomes several disadvantages such as sharp pressure transitions, entropy generation due to shock waves, and exergy losses due to kinetic energy which are associated with other aCVC approaches like, e.g., pulsed detonation combustion. The combustion is controlled via the the fuel/air mixture distribution which is adjusted such that the entire fuel/air volume undergoes a spatially quasi-homogeneous autoignition. Accordingly, no shock waves occur and the losses associated with a detonation wave are not present in the proposed system. Instead, a smooth pressure rise is created due to the heat release of the homogeneous combustion. An atmospheric combustion test rig is designed to investigate the autoignition behavior of relevant fuels under intermittent operation, currently up to a frequency of 2Hz. Application of OH*- and dynamic pressure sensors allows for a spatially- and time-resolved detection of ignition delay times and locations. Dimethyl ether (DME) is used as fuel since it exhibits reliable autoignition already at 920K mixture temperature and ambient pressure. First, a model-based control algorithm is used to demonstrate that the fuel valve can produce arbitrary fuel profiles in the combustion tube. Next, the control algorithm is used to achieve the desired fuel stratification, resulting in a significant reduction in spatial variance of the auto-ignition delay times. This proves that the control approach is a useful tool for increasing the homogeneity of the autoignition.


Author(s):  
Samuel Barak ◽  
Owen Pryor ◽  
Erik Ninnemann ◽  
Sneha Neupane ◽  
Xijia Lu ◽  
...  

Abstract In this study, a shock tube is used to investigate combustion tendencies of several fuel mixtures under high carbon dioxide dilution and high fuel loading. Individual mixtures of oxy-syngas and oxy-methane fuels were added to CO2 bath gas environments and ignition delay time data was recorded. Reflected shock pressures maxed around 100 atm, which is above the critical pressure of carbon dioxide in to the supercritical regime. In total, five mixtures were investigated within a temperature range of 1050–1350K. Ignition delay times of all mixtures were compared with predictions of two leading chemical kinetic computer mechanisms for accuracy. The mixtures included four oxy-syngas and one oxy-methane combinations. The experimental data tended to show good agreement with the predictions of literature models for the methane mixture. For all syngas mixtures though the models performed reasonably well at some conditions, predictions were not able to accurately capture the overall behavior. For this reason, there is a need to further investigate the discrepancies in predictions. Additionally, more data must be collected at high pressures to fully understand the chemical kinetic behavior of these mixtures to enable the supercritical CO2 power cycle development.


Sign in / Sign up

Export Citation Format

Share Document