Ignition delay times of methyl oleate and methyl linoleate behind reflected shock waves

2013 ◽  
Vol 34 (1) ◽  
pp. 419-425 ◽  
Author(s):  
M.F. Campbell ◽  
D.F. Davidson ◽  
R.K. Hanson ◽  
C.K. Westbrook
Shock Waves ◽  
2002 ◽  
Vol 11 (4) ◽  
pp. 309-322 ◽  
Author(s):  
N. Lamoureux ◽  
C.-E. Paillard ◽  
V. Vaslier

Fuel ◽  
2014 ◽  
Vol 126 ◽  
pp. 271-281 ◽  
Author(s):  
Matthew F. Campbell ◽  
David F. Davidson ◽  
Ronald K. Hanson

Author(s):  
K. Ikeda ◽  
J.C. Mackie

Ignition delay times have been measured behind reflected shock waves in ethane-oxygen-argon mixtures at temperatures between 1150 and 1500 K and pre-ignition pressures between 10 and 14 atm. Delay times have been measured both by pressure rise and OH absorption at 307 nm. Kinetic modelling of the ignition delays has been made using the GRIMech 3.0 mechanism which with addition of several reactions involving HO


2015 ◽  
Vol 35 (1) ◽  
pp. 241-248 ◽  
Author(s):  
Yangye Zhu ◽  
Sijie Li ◽  
David F. Davidson ◽  
Ronald K. Hanson

Author(s):  
Thoralf G. Reichel ◽  
Bernhard C. Bobusch ◽  
Christian Oliver Paschereit ◽  
Jan-Simon Schäpel ◽  
Rudibert King ◽  
...  

Approximate constant volume combustion (aCVC) is a promising way to achieve a step change in the efficiency of gas turbines. This work investigates a recently proposed approach to implement aCVC in a gas turbine combustion system: shockless explosion combustion (SEC). The new concept overcomes several disadvantages such as sharp pressure transitions, entropy generation due to shock waves, and exergy losses due to kinetic energy which are associated with other aCVC approaches like, e.g., pulsed detonation combustion. The combustion is controlled via the the fuel/air mixture distribution which is adjusted such that the entire fuel/air volume undergoes a spatially quasi-homogeneous autoignition. Accordingly, no shock waves occur and the losses associated with a detonation wave are not present in the proposed system. Instead, a smooth pressure rise is created due to the heat release of the homogeneous combustion. An atmospheric combustion test rig is designed to investigate the autoignition behavior of relevant fuels under intermittent operation, currently up to a frequency of 2Hz. Application of OH*- and dynamic pressure sensors allows for a spatially- and time-resolved detection of ignition delay times and locations. Dimethyl ether (DME) is used as fuel since it exhibits reliable autoignition already at 920K mixture temperature and ambient pressure. First, a model-based control algorithm is used to demonstrate that the fuel valve can produce arbitrary fuel profiles in the combustion tube. Next, the control algorithm is used to achieve the desired fuel stratification, resulting in a significant reduction in spatial variance of the auto-ignition delay times. This proves that the control approach is a useful tool for increasing the homogeneity of the autoignition.


Author(s):  
Samuel Barak ◽  
Owen Pryor ◽  
Erik Ninnemann ◽  
Sneha Neupane ◽  
Xijia Lu ◽  
...  

Abstract In this study, a shock tube is used to investigate combustion tendencies of several fuel mixtures under high carbon dioxide dilution and high fuel loading. Individual mixtures of oxy-syngas and oxy-methane fuels were added to CO2 bath gas environments and ignition delay time data was recorded. Reflected shock pressures maxed around 100 atm, which is above the critical pressure of carbon dioxide in to the supercritical regime. In total, five mixtures were investigated within a temperature range of 1050–1350K. Ignition delay times of all mixtures were compared with predictions of two leading chemical kinetic computer mechanisms for accuracy. The mixtures included four oxy-syngas and one oxy-methane combinations. The experimental data tended to show good agreement with the predictions of literature models for the methane mixture. For all syngas mixtures though the models performed reasonably well at some conditions, predictions were not able to accurately capture the overall behavior. For this reason, there is a need to further investigate the discrepancies in predictions. Additionally, more data must be collected at high pressures to fully understand the chemical kinetic behavior of these mixtures to enable the supercritical CO2 power cycle development.


Author(s):  
Samuel Barak ◽  
Erik Ninnemann ◽  
Sneha Neupane ◽  
Frank Barnes ◽  
Jayanta Kapat ◽  
...  

In this study, syngas combustion was investigated behind reflected shock waves in CO2 bath gas to measure ignition delay times and to probe the effects of CO2 dilution. New syngas data were taken between pressures of 34.58–45.50 atm and temperatures of 1113–1275K. This study provides experimental data for syngas combustion in CO2 diluted environments: ignition studies in a shock tube (59 data points in 10 datasets). In total, these mixtures covered a range of temperatures T, pressures P, equivalence ratios φ, H2/CO ratio θ, and CO2 diluent concentrations. Multiple syngas combustion mechanisms exist in the literature for modelling ignition delay times and their performance can be assessed against data collected here. In total, twelve mechanisms were tested and presented in this work. All mechanisms need improvements at higher pressures for accurately predicting the measured ignition delay times. At lower pressures, some of the models agreed relatively well with the data. Some mechanisms predicted ignition delay times which were 2 orders of magnitudes different from the measurements. This suggests there is behavior that has not been fully understood on the kinetic models and are inaccurate in predicting CO2 diluted environments for syngas combustion. To the best of our knowledge, current data are the first syngas ignition delay times measurements close to 50 atm under highly CO2 diluted (85% per vol.) conditions.


1995 ◽  
Vol 418 ◽  
Author(s):  
R. O. Foelsche ◽  
M. J. Spalding ◽  
R. L. Burton ◽  
H. Krier

AbstractBoron ignition delay times for 24 μm diameter particles have been measured behind the reflected shock at a shock tube endwall in reduced oxygen atmospheres and in a combustion bomb at higher pressures in the products of a hydrogen/oxygen/nitrogen reaction. The shock tube study independently varies temperature (1400 – 3200 K), pressure (8.5, 34 atm), and ignition-enhancer additives (water vapor, fluorine compounds). A combustion chamber is used at a peak pressure of 157 atm and temperature in excess of 2800 K to study ignition delays at higher pressures than are possible in the shock tube.


Sign in / Sign up

Export Citation Format

Share Document