Connectionist approach estimates gas–oil relative permeability in petroleum reservoirs: Application to reservoir simulation

Fuel ◽  
2015 ◽  
Vol 140 ◽  
pp. 429-439 ◽  
Author(s):  
Mohammad Ali Ahmadi
Author(s):  
Shreerang S. Chhatre ◽  
Amy L. Chen ◽  
Muhammed Al-Rukabi ◽  
Daniel W. Berry ◽  
Robert Longoria ◽  
...  

2010 ◽  
Vol 13 (02) ◽  
pp. 306-312 ◽  
Author(s):  
Medhat M. Kamal ◽  
Yan Pan

Summary A new well-testing-analysis method is presented. The method allows for calculating the absolute permeability of the formation in the area influenced by the test and the average saturations in this area. Traditional pressure-transient-analysis methods have been developed and are completely adequate for single-phase flow in the reservoir. The proposed method is not intended for these conditions. The method applies to two-phase flow in the reservoir (oil and water or oil and gas). Future expansion to three-phase flow is possible. Current analysis methods yield only the effective permeability for the dominant flowing phase and the "total mobility" of all phases. The new method uses the surface-flow rates and fluid properties of the flowing phases and the same relative permeability relations used in characterizing the reservoir and predicting its future performance. The method has been verified by comparing the results from analyzing several synthetic tests that were produced by a numerical simulator with the input values. Use of the method with field data is also described. The new method could be applied wherever values of absolute permeability or fluid saturations are used in predicting well and reservoir performance. Probably, the major impact would be in reservoir simulation studies in which the need to transform welltesting permeability to simulator input values is eliminated and additional parameters (fluids saturations) become available to help history match the reservoir performance. This work will also help in predicting well flow rates and in situations in which absolute permeability changes with time (e.g., from compaction). Results showed that the values of absolute permeability in water/oil cases could be reproduced within 3% of the correct values and within 5% of the correct values in gas/oil cases. Errors in calculating the fluid saturations were even lower. One of the main advantages of this method is that the relative permeability curves used in calculating the absolute permeability and average saturations, and later on in numerical reservoir simulation studies, are the same, ensuring a consistent process. The proposed method does not address the question of which set of relative permeability curves should be used. This question should be answered by the engineer performing the reservoir engineering/simulation study. The proposed method mainly is meant to provide consistent results for predicting the reservoir performance using whatever relative permeability relations that are being used in the reservoir simulation model. The method does not induce any additional errors in determining the average saturation or absolute permeability over what may result from using these specific relative permeability curves in the reservoir simulation study. The impact of this study will be to expand the use of information already contained in transient data and surface flow rates of all phases. The results will provide engineers with additional parameters to improve and speed up history matching and the prediction of well and reservoir performances in just about all studies.


2006 ◽  
Vol 9 (06) ◽  
pp. 688-697 ◽  
Author(s):  
Mahmoud Jamiolahmady ◽  
Ali Danesh ◽  
D.H. Tehrani ◽  
Mehran Sohrabi

Summary It has been demonstrated, first by this laboratory and subsequently by other researchers, that the gas and condensate relative permeability can increase significantly by increasing rate, contrary to the common understanding. There are now a number of correlations in the literature and commercial reservoir simulators accounting for the positive effect of coupling and the negative effect of inertia at near-wellbore conditions. The available functional forms estimate the two effects separately and include a number of parameters, which should be determined with measurements at high-velocity conditions. Measurements of gas/condensate relative permeability at simulated near-wellbore conditions are very demanding and expensive. Recent experimental findings in this laboratory indicate that measured gas/condensate relative permeability values on cores with different characteristics become more similar if expressed in terms of fractional flow instead of the commonly used saturation. This would lower the number of rock curves required in reservoir studies. Hence, we have used a large data bank of gas/condensate relative permeability measurements to develop a general correlation accounting for the combined effect of coupling and inertia as a function of fractional flow. The parameters of the new correlation are either universal, applicable to all types of rocks, or can be determined from commonly measured petrophysical data. The developed correlation has been evaluated by comparing its prediction with the gas/condensate relative permeability values measured at near-wellbore conditions on reservoir rocks not used in its development. The results are quite satisfactory, confirming that the correlation can provide reliable information on variations of relative permeability at near-wellbore conditions with no requirement for expensive measurements. Introduction The process of condensation around the wellbore in a gas/condensate reservoir, when the pressure falls below the dewpoint, creates a region in which both gas and condensate phases flow. The flow behavior in this region is controlled by the viscous, capillary, and inertial forces. This, along with the presence of condensate in all the pores, dictates a flow mechanism that is different from that of gas/oil and gas/condensate in the bulk of the reservoir (Danesh et al. 1989). Accurate determination of gas/condensate relative permeability (kr) values, which is very important in well-deliverability estimates, is a major challenge and requires an approach different from that for conventional gas/oil systems. It has been widely accepted that relative permeability (kr) values at low values of interfacial tension (IFT) are strong functions of IFT as well as fluid saturation (Bardon and Longeron 1980; Asar and Handy 1988; Haniff and Ali 1990; Munkerud 1995). Danesh et al. (1994) were first to report the improvement of the relative permeability of condensing systems owing to an increase in velocity as well as that caused by a reduction in IFT. This flow behavior, referred to as the positive coupling effect, was subsequently confirmed experimentally by other investigators (Henderson et al. 1995, 1996; Ali et al. 1997; Blom et al. 1997). Jamiolahmady et al. (2000) were first to study the positive coupling effect mechanistically capturing the competition of viscous and capillary forces at the pore level, where there is simultaneous flow of the two phases with intermittent opening and closure of the gas passage by condensate. Jamiolahmady et al. (2003) developed a steady-dynamic network model capturing this flow behavior and predicted some kr values, which were quantitatively comparable with the experimentally measured values.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2394-2408 ◽  
Author(s):  
Sajjad S. Neshat ◽  
Gary A. Pope

Summary New coupled three-phase hysteretic relative permeability and capillary pressure models have been developed and tested for use in compositional reservoir simulators. The new formulation incorporates hysteresis and compositional consistency for both capillary pressure and relative permeability. This approach is completely unaffected by phase flipping and misidentification, which commonly occur in compositional simulations. Instead of using phase labels (gas/oil/solvent/aqueous) to define hysteretic relative permeability and capillary pressure parameters, the parameters are continuously interpolated between reference values using the Gibbs free energy (GFE) of each phase at each timestep. Models that are independent of phase labels have many advantages in terms of both numerical stability and physical consistency. The models integrate and unify relevant physical parameters, including hysteresis and trapping number, into one rigorous algorithm with a minimum number of parameters for application in numerical reservoir simulators. The robustness of the new models is demonstrated with simulations of the miscible water-alternating-gas (WAG) process and solvent stimulation to remove condensate and/or water blocks in both conventional and unconventional formations.


Sign in / Sign up

Export Citation Format

Share Document