Use of Transient Data To Calculate Absolute Permeability and Average Fluid Saturations

2010 ◽  
Vol 13 (02) ◽  
pp. 306-312 ◽  
Author(s):  
Medhat M. Kamal ◽  
Yan Pan

Summary A new well-testing-analysis method is presented. The method allows for calculating the absolute permeability of the formation in the area influenced by the test and the average saturations in this area. Traditional pressure-transient-analysis methods have been developed and are completely adequate for single-phase flow in the reservoir. The proposed method is not intended for these conditions. The method applies to two-phase flow in the reservoir (oil and water or oil and gas). Future expansion to three-phase flow is possible. Current analysis methods yield only the effective permeability for the dominant flowing phase and the "total mobility" of all phases. The new method uses the surface-flow rates and fluid properties of the flowing phases and the same relative permeability relations used in characterizing the reservoir and predicting its future performance. The method has been verified by comparing the results from analyzing several synthetic tests that were produced by a numerical simulator with the input values. Use of the method with field data is also described. The new method could be applied wherever values of absolute permeability or fluid saturations are used in predicting well and reservoir performance. Probably, the major impact would be in reservoir simulation studies in which the need to transform welltesting permeability to simulator input values is eliminated and additional parameters (fluids saturations) become available to help history match the reservoir performance. This work will also help in predicting well flow rates and in situations in which absolute permeability changes with time (e.g., from compaction). Results showed that the values of absolute permeability in water/oil cases could be reproduced within 3% of the correct values and within 5% of the correct values in gas/oil cases. Errors in calculating the fluid saturations were even lower. One of the main advantages of this method is that the relative permeability curves used in calculating the absolute permeability and average saturations, and later on in numerical reservoir simulation studies, are the same, ensuring a consistent process. The proposed method does not address the question of which set of relative permeability curves should be used. This question should be answered by the engineer performing the reservoir engineering/simulation study. The proposed method mainly is meant to provide consistent results for predicting the reservoir performance using whatever relative permeability relations that are being used in the reservoir simulation model. The method does not induce any additional errors in determining the average saturation or absolute permeability over what may result from using these specific relative permeability curves in the reservoir simulation study. The impact of this study will be to expand the use of information already contained in transient data and surface flow rates of all phases. The results will provide engineers with additional parameters to improve and speed up history matching and the prediction of well and reservoir performances in just about all studies.

2017 ◽  
Vol 4 (1) ◽  
pp. 129-140
Author(s):  
Jorge Ordóñez ◽  
José Villegas ◽  
Alamir Alvarez

En el presente trabajo se propone el uso de un único set de curvas de permeabilidad a ser empleado en los estudios de simulación y caracterización de yacimientos de gas en mantos de carbón (CBM), en vez del uso común de un set de curvas para cada estrato individual. Para comprobar la aplicabilidad de este procedimiento, se simula un yacimiento usando ambos métodos: el resultado de producción debe ser similar en ambas simulacionesEl modelo para promediar la permeabilidad absoluta en un flujo monofásico, fue usado para el caso de predecir un promedio de permeabilidad relativa para un yacimiento con flujo bifásico. Luego de correr varios casos y corroborar que la ecuación propuesta no cumplía las expectativas, el enfoque del trabajo fue explicar el por qué del no funcionamiento de la ecuación propuesta. Una posible explicación fue la no consideración de la gravedad, que acorde a varias simulaciones presentadas, es un parámetro principal en las curvas de producción. La saturación de agua tampoco puede excluirse de la ecuación que prediga este promedio.  Por tanto si se quiere presentar una ecuación para el cálculo de promedio de permeabilidades relativas, es fundamental que tanto la gravedad como la saturación de agua estén incluidas en esta ecuación.Abstract This paper tries to average relative permeability in a way that instead of using different sets of relative permeability curves to different layers, one single set could be used in one single layer, and to get similar production results as if different layers and different relative permeability were used instead. The model to average absolute permeability in a single-phase flow system was used to predict two-phase flow average relative permeability. After running different cases and corroborating that the equation proposed did not match the expectations. The focus of this work was changed in order to explain why the equation was not working. A possible explanation of why the equation is not accurate could be that the equation is not considering the influence of gravity. Gravity plays a very important role in reservoirs. After gas desorption process occurs, free gas migrates to top layers and water migrates to bottom layers. Water saturation could not be excluded from the equation that averages relative permeability curves. The effects of gravity should be considered too, if you want to get an equation to predict production behaviour by using one average equation in a single layer.


2020 ◽  
Vol 146 ◽  
pp. 01002
Author(s):  
Thomas Ramstad ◽  
Anders Kristoffersen ◽  
Einar Ebeltoft

Relative permeability and capillary pressure are key properties within special core analysis and provide crucial information for full field simulation models. These properties are traditionally obtained by multi-phase flow experiments, however pore scale modelling has during the last decade shown to add significant information as well as being less time-consuming to obtain. Pore scale modelling has been performed by using the lattice-Boltzmann method directly on the digital rock models obtained by high resolution micro-CT images on end-trims available when plugs are prepared for traditional SCAL-experiments. These digital rock models map the pore-structure and are used for direct simulations of two-phase flow to relative permeability curves. Various types of wettability conditions are introduced by a wettability map that opens for local variations of wettability on the pore space at the pore level. Focus have been to distribute realistic wettabilities representative for the Norwegian Continental Shelf which is experiencing weakly-wetting conditions and no strong preference neither to water nor oil. Spanning a realistic wettability-map and enabling flow in three directions, a large amount of relative permeability curves is obtained. The resulting relative permeabilities hence estimate the uncertainty of the obtained flow properties on a spatial but specific pore structure with varying, but realistic wettabilities. The obtained relative permeability curves are compared with results obtained by traditional SCAL-analysis on similar core material from the Norwegian Continental Shelf. The results are also compared with the SCAL-model provided for full field simulations for the same field. The results from the pore scale simulations are within the uncertainty span of the SCAL models, mimic the traditional SCAL-experiments and shows that pore scale modelling can provide a time- and cost-effective tool to provide SCAL-models with uncertainties.


2013 ◽  
Vol 53 (1) ◽  
pp. 363
Author(s):  
Yangfan Lu ◽  
Hassan Bahrami ◽  
Mofazzal Hossain ◽  
Ahmad Jamili ◽  
Arshad Ahmed ◽  
...  

Tight-gas reservoirs have low permeability and significant damage. When drilling the tight formations, wellbore liquid invades the formation and increases water saturation of the near wellbore area and significantly deceases permeability of this area. Because of the invasion, the permeability of the invasion zone near the wellbore in tight-gas formations significantly decreases. This damage is mainly controlled by wettability and capillary pressure (Pc). One of the methods to improve productivity of tight-gas reservoirs is to reduce IFT between formation gas and invaded water to remove phase trapping. The invasion of wellbore liquid into tight formations can damage permeability controlled by Pc and relative permeability curves. In the case of drilling by using a water-based mud, tight formations are sensitive to the invasion damage due to the high-critical water saturation and capillary pressures. Reducing the Pc is an effective way to increase the well productivity. Using the IFT reducers, Pc effect is reduced and trapped phase can be recovered; therefore, productivity of the TGS reservoirs can be increased significantly. This study focuses on reducing phase-trapping damage in tight reservoirs by using reservoir simulation to examine the methods, such use of IFT reducers in water-based-drilled tight formations that can reduce Pc effect. The Pc and relative permeability curves are corrected based on the reduced IFT; they are then input to the reservoir simulation model to quantitatively understand how IFT reducers can help improve productivity of tight reservoirs.


2007 ◽  
Vol 10 (06) ◽  
pp. 730-739 ◽  
Author(s):  
Genliang Guo ◽  
Marlon A. Diaz ◽  
Francisco Jose Paz ◽  
Joe Smalley ◽  
Eric A. Waninger

Summary In clastic reservoirs in the Oriente basin, South America, the rock-quality index (RQI) and flow-zone indicator (FZI) have proved to be effective techniques for rock-type classifications. It has long been recognized that excellent permeability/porosity relationships can be obtained once the conventional core data are grouped according to their rock types. Furthermore, it was also observed from this study that the capillary pressure curves, as well as the relative permeability curves, show close relationships with the defined rock types in the basin. These results lead us to believe that if the rock type is defined properly, then a realistic permeability model, a unique set of relative permeability curves, and a consistent J function can be developed for a given rock type. The primary purpose of this paper is to demonstrate the procedure for implementing this technique in our reservoir modeling. First, conventional core data were used to define the rock types for the cored intervals. The wireline log measurements at the cored depths were extracted, normalized, and subsequently analyzed together with the calculated rock types. A mathematical model was then built to predict the rock type in uncored intervals and in uncored wells. This allows the generation of a synthetic rock-type log for all wells with modern log suites. Geostatistical techniques can then be used to populate the rock type throughout a reservoir. After rock type and porosity are populated properly, the permeability can be estimated by use of the unique permeability/porosity relationship for a given rock type. The initial water saturation for a reservoir can be estimated subsequently by use of the corresponding rock-type, porosity, and permeability models as well as the rock-type-based J functions. We observed that a global permeability multiplier became unnecessary in our reservoir-simulation models when the permeability model is constructed with this technique. Consistent initial-water-saturation models (i.e., calculated and log-measured water saturations are in excellent agreement) can be obtained when the proper J function is used for a given rock type. As a result, the uncertainty associated with volumetric calculations is greatly reduced as a more accurate initial-water-saturation model is used. The true dynamic characteristics (i.e., the flow capacity) of the reservoir are captured in the reservoir-simulation model when a more reliable permeability model is used. Introduction Rock typing is a process of classifying reservoir rocks into distinct units, each of which was deposited under similar geological conditions and has undergone similar diagenetic alterations (Gunter et al. 1997). When properly classified, a given rock type is imprinted by a unique permeability/porosity relationship, capillary pressure profile (or J function), and set of relative permeability curves (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993). As a result, when properly applied, rock typing can lead to the accurate estimation of formation permeability in uncored intervals and in uncored wells; reliable generation of initial-water-saturation profile; and subsequently, the consistent and realistic simulation of reservoir dynamic behavior and production performance. Of the various quantitative rock-typing techniques (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993; Porras and Campos 2001; Jennings and Lucia 2001; Rincones et al. 2000; Soto et al. 2001) presented in the literature, two techniques (RQI/FZI and Winland's R35) appear to be used more widely than the others for clastic reservoirs (Gunter et al. 1997, Amaefule et al. 1993). In the RQI/FZI approach (Amaefule et al. 1993), rock types are classified with the following three equations: [equations]


2018 ◽  
Vol 58 (2) ◽  
pp. 683 ◽  
Author(s):  
Peter Behrenbruch ◽  
Tuan G. Hoang ◽  
Khang D. Bui ◽  
Minh Triet Do Huu ◽  
Tony Kennaird

The Laminaria field, located offshore in the Timor Sea, is one of Australia’s premier oil developments operated for many years by Woodside Energy Ltd. First production was achieved in 1999 using a state-of-the-art floating production storage and offloading vessel, the largest deployed in Australian waters. As is typical, dynamic reservoir simulation was used to predict reservoir performance and forecast production and ultimate recovery. Initial models, using special core analysis (SCAL) laboratory data and pseudos, covered a range of approaches, field and conceptual models. Initial coarser models also used straight-line relative permeability curves. These models were later refined during history matching. The success of simulation studies depends critically on optimal gridding, particularly vertical definition. An objective of the study presented is to demonstrate the importance of optimal and detailed vertical zonation using Routine Core Analysis data and a range of Hydraulic Flow Zone Unit models. In this regard, the performance of a fine-scale model is compared with three alternative, more traditional and coarse models. Secondly the choice of SCAL rock parameters may also have a significant impact, particularly relative permeability. This paper discusses the use of the more recently developed Carman-Kozeny based SCAL models, the Modified Carman-Kozeny Purcell (MCKP) model for capillary pressure and the 2-phase Modified Carman-Kozeny (2p-MCK) model for relative permeability. These models compare favourably with industry standard approaches, the use of Leverett J-functions for capillary pressure and the Modified Brooks-Corey model for relative permeability. The benefit of the MCK-based models is that they have better functionality and far better adherence to actual laboratory data.


2021 ◽  
Vol 14 (04) ◽  
pp. 259-267
Author(s):  
I. C. A. B. A. Santos ◽  
F. M. Eler ◽  
D. S. S. Nunes ◽  
P. Couto

Relative permeability curves obtained in laboratory are used in reservoir simulators to predict production and establish the best strategies for an oil field. Therefore, researchers study several procedures to obtain relative permeability curves. Among these procedures are the multiple flow rates injection methods. Thus, this work proposes to develop an experimental procedure with multiple increasing flows. To make this feasible, simulations were initially carried out at CYDAR, aiming to establish flow rates and time necessary to achieve system stabilization, within the limits of the equipment. After that, tests were carried out establishing the minimum time of 5 hours to stabilize the oil production, and the differential pressure at each flow rate. The accounting and minimization of the capillary end effect in these tests were also evaluated. Capillary pressure constraints contributed to minimize the number of possible solutions to the optimization problem improving the fit of solutions for a specific case.


2021 ◽  
Author(s):  
Subodh Gupta

Abstract The objective of this paper is to present a fundamentals-based, consistent with observation, three-phase flow model that avoids the pitfalls of conventional models such as Stone-II or Baker's three-phase permeability models. While investigating the myth of residual oil saturation in SAGD with comparing model generated results against field data, Gupta et al. (2020) highlighted the difficulty in matching observed residual oil saturation in steamed reservoir with Stone-II and Baker's linear models. Though the use of Stone-II model is very popular for three-phase flow across the industry, one issue in the context of gravity drainage is how it appears to counter-intuitively limit the flow of oil when water is present near its irreducible saturation. The current work begins with describing the problem with existing combinatorial methods such as Stone-II, which in turn combine the water-oil, and gas-oil relative permeability curves to yield the oil relative permeability curve in presence of water and gas. Then starting with the fundamentals of laminar flow in capillaries and with successive analogical formulations, it develops expressions that directly yield the relative permeabilities for all three phases. In this it assumes a pore size distribution approximated by functions used earlier in the literature for deriving two-phase relative permeability curves. The outlined approach by-passes the need for having combinatorial functions such as prescribed by Stone or Baker. The model so developed is simple to use, and it avoids the unnatural phenomenon or discrepancy due to a mathematical artefact described in the context of Stone-II above. The model also explains why in the past some researchers have found relative permeability to be a function of temperature. The new model is also amenable to be determined experimentally, instead of being based on an assumed pore-size distribution. In that context it serves as a set of skeletal functions of known dependencies on various saturations, leaving constants to be determined experimentally. The novelty of the work is in development of a three-phase relative permeability model that is based on fundamentals of flow in fine channels and which explains the observed results in the context of flow in porous media better. The significance of the work includes, aside from predicting results more in line with expectations and an explanation of temperature dependent relative permeabilities of oil, a more reliable time dependent residual oleic-phase saturation in the context of gravity-based oil recovery methods.


1969 ◽  
Vol 9 (02) ◽  
pp. 221-231 ◽  
Author(s):  
R. Ehrlich ◽  
F.E. Crane

Abstract A consolidated porous medium is mathematically modeled by networks of irregularly shaped interconnected pore channels. Mechanisms are described that form residual saturations during immiscible displacement both by entire pore channels being bypassed and by fluids being isolated by the movement of an interface within individual pore channels. This latter mechanism is shown to depend strongly on pore channel irregularity. Together, these mechanisms provide an explanation for the drainage-imbibition-hysteresis effect. The calculation of steady-state relative permeabilities, based on a pore-size distribution permeabilities, based on a pore-size distribution obtained from a Berea sandstone, is described. These relative permeability curves agree qualitatively with curves that are generally accepted to be typical for highly consolidated materials. In situations where interfacial effects predominate over viscous and gravitational effects, the following conclusions are reached.Relative permeability at a given saturation is everywhere independent of flow rate.Relative permeability is independent of viscosity ratio everywhere except at very low values of wetting phase relative permeability.Irreducible wetting-phase saturation following steady-state drainage decreases with increasing ratio of nonwetting- to wetting-phase viscosity.Irreducible wetting-phase saturation following unsteady-state drainage is lower than for steady-state drainage.Irreducible nonwetting-phase saturation following imbibition is independent of viscosity ratio, whether or not the imbibition is carried out under steady- or unsteady-state conditions. Experiments qualitatively verify the conclusions regarding unsteady-state residual wetting-phase saturation. Implications of these conclusions are discussed. Introduction Natural and artificial porous materials are generally composed of matrix substance brought together in a more or less random manner. This leads to the creation of a network of interconnected pore spaces of highly irregular shape. Since the pore spaces of highly irregular shape. Since the geometry of such a network is impossible to describe, we can never obtain a complete description of its flow behavior. We can, however, abstract those properties of the porous medium pertinent to the type of flow under consideration, and thus obtain an adequate description of that flow. Thus, the Kozeny-Carmen equation, by considering a porous medium as a bundle of noninterconnecting capillary tubes, provides an adequate description of single-phase provides an adequate description of single-phase flow. With the addition of a saturation-dependent tortuosity parameter in two-phase flow to account for flow path elongation, the Kozeny-Carmen equation has been used to predict relative permeabilities for the displacement of a wetting permeabilities for the displacement of a wetting liquid by a gas. It has long been recognized that relative permeability depends not only on saturation but permeability depends not only on saturation but also on saturation history as well. Naar and Henderson described a mathematical model in which differences between drainage and imbibition behavior are explained in terms of a bypassing mechanism by which oil is trapped during imbibition. Fatt proposed a model for a porous medium that consisted of regular networks of cylindrical tubes of randomly distributed radii. From this he calculated the drainage relative permeability curves. Moore and Slobod, Rose and Witherspoon, and Rose and Cleary each considered flow in a pore doublet (a parallel arrangement of a small and pore doublet (a parallel arrangement of a small and large diameter cylindrical capillary tube). They concluded that, because of the different rates of flow in each tube, trapping would occur in one of the tubes; the extent of which would depend upon viscosity ratio and capillary pressure. SPEJ p. 221


Sign in / Sign up

Export Citation Format

Share Document