Methods and Tools for the Development of Consistent Reservoir Rock Type Based Relative Permeability and Capillary Pressure Models for Reservoir Simulation

Author(s):  
James Gregory Kralik ◽  
Kyle Guice ◽  
Jonathan Paul Meissner
2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Xiangnan Liu ◽  
Daoyong Yang

Abstract In this paper, techniques have been developed to interpret three-phase relative permeability and water–oil capillary pressure simultaneously in a tight carbonate reservoir from numerically simulating wireline formation tester (WFT) measurements. A high-resolution cylindrical near-wellbore model is built based on a set of pressures and flow rates collected by dual packer WFT in a tight carbonate reservoir. The grid quality is validated, the effective thickness of the WFT measurements is examined, and the effectiveness of the techniques is confirmed prior to performing history matching for both the measured pressure drawdown and buildup profiles. Water–oil relative permeability, oil–gas relative permeability, and water–oil capillary pressure are interpreted based on power-law functions and under the assumption of a water-wet reservoir and an oil-wet reservoir, respectively. Subsequently, three-phase relative permeability for the oil phase is determined using the modified Stone II model. Both the relative permeability and the capillary pressure of a water–oil system interpreted under an oil-wet condition match well with the measured relative permeability and capillary pressure of a similar reservoir rock type collected from the literature, while the relative permeability of an oil–gas system and the three-phase relative permeability bear a relatively high uncertainty. Not only is the reservoir determined as oil-wet but also the initial oil saturation is found to impose an impact on the interpreted water relative permeability under an oil-wet condition. Changes in water and oil viscosities and mud filtrate invasion depth affect the range of the movable fluid saturation of the interpreted water–oil relative permeabilities.


2007 ◽  
Vol 10 (06) ◽  
pp. 730-739 ◽  
Author(s):  
Genliang Guo ◽  
Marlon A. Diaz ◽  
Francisco Jose Paz ◽  
Joe Smalley ◽  
Eric A. Waninger

Summary In clastic reservoirs in the Oriente basin, South America, the rock-quality index (RQI) and flow-zone indicator (FZI) have proved to be effective techniques for rock-type classifications. It has long been recognized that excellent permeability/porosity relationships can be obtained once the conventional core data are grouped according to their rock types. Furthermore, it was also observed from this study that the capillary pressure curves, as well as the relative permeability curves, show close relationships with the defined rock types in the basin. These results lead us to believe that if the rock type is defined properly, then a realistic permeability model, a unique set of relative permeability curves, and a consistent J function can be developed for a given rock type. The primary purpose of this paper is to demonstrate the procedure for implementing this technique in our reservoir modeling. First, conventional core data were used to define the rock types for the cored intervals. The wireline log measurements at the cored depths were extracted, normalized, and subsequently analyzed together with the calculated rock types. A mathematical model was then built to predict the rock type in uncored intervals and in uncored wells. This allows the generation of a synthetic rock-type log for all wells with modern log suites. Geostatistical techniques can then be used to populate the rock type throughout a reservoir. After rock type and porosity are populated properly, the permeability can be estimated by use of the unique permeability/porosity relationship for a given rock type. The initial water saturation for a reservoir can be estimated subsequently by use of the corresponding rock-type, porosity, and permeability models as well as the rock-type-based J functions. We observed that a global permeability multiplier became unnecessary in our reservoir-simulation models when the permeability model is constructed with this technique. Consistent initial-water-saturation models (i.e., calculated and log-measured water saturations are in excellent agreement) can be obtained when the proper J function is used for a given rock type. As a result, the uncertainty associated with volumetric calculations is greatly reduced as a more accurate initial-water-saturation model is used. The true dynamic characteristics (i.e., the flow capacity) of the reservoir are captured in the reservoir-simulation model when a more reliable permeability model is used. Introduction Rock typing is a process of classifying reservoir rocks into distinct units, each of which was deposited under similar geological conditions and has undergone similar diagenetic alterations (Gunter et al. 1997). When properly classified, a given rock type is imprinted by a unique permeability/porosity relationship, capillary pressure profile (or J function), and set of relative permeability curves (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993). As a result, when properly applied, rock typing can lead to the accurate estimation of formation permeability in uncored intervals and in uncored wells; reliable generation of initial-water-saturation profile; and subsequently, the consistent and realistic simulation of reservoir dynamic behavior and production performance. Of the various quantitative rock-typing techniques (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993; Porras and Campos 2001; Jennings and Lucia 2001; Rincones et al. 2000; Soto et al. 2001) presented in the literature, two techniques (RQI/FZI and Winland's R35) appear to be used more widely than the others for clastic reservoirs (Gunter et al. 1997, Amaefule et al. 1993). In the RQI/FZI approach (Amaefule et al. 1993), rock types are classified with the following three equations: [equations]


2018 ◽  
Vol 58 (2) ◽  
pp. 683 ◽  
Author(s):  
Peter Behrenbruch ◽  
Tuan G. Hoang ◽  
Khang D. Bui ◽  
Minh Triet Do Huu ◽  
Tony Kennaird

The Laminaria field, located offshore in the Timor Sea, is one of Australia’s premier oil developments operated for many years by Woodside Energy Ltd. First production was achieved in 1999 using a state-of-the-art floating production storage and offloading vessel, the largest deployed in Australian waters. As is typical, dynamic reservoir simulation was used to predict reservoir performance and forecast production and ultimate recovery. Initial models, using special core analysis (SCAL) laboratory data and pseudos, covered a range of approaches, field and conceptual models. Initial coarser models also used straight-line relative permeability curves. These models were later refined during history matching. The success of simulation studies depends critically on optimal gridding, particularly vertical definition. An objective of the study presented is to demonstrate the importance of optimal and detailed vertical zonation using Routine Core Analysis data and a range of Hydraulic Flow Zone Unit models. In this regard, the performance of a fine-scale model is compared with three alternative, more traditional and coarse models. Secondly the choice of SCAL rock parameters may also have a significant impact, particularly relative permeability. This paper discusses the use of the more recently developed Carman-Kozeny based SCAL models, the Modified Carman-Kozeny Purcell (MCKP) model for capillary pressure and the 2-phase Modified Carman-Kozeny (2p-MCK) model for relative permeability. These models compare favourably with industry standard approaches, the use of Leverett J-functions for capillary pressure and the Modified Brooks-Corey model for relative permeability. The benefit of the MCK-based models is that they have better functionality and far better adherence to actual laboratory data.


SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 1003-1019 ◽  
Author(s):  
Odd Steve Hustad ◽  
David John Browning

Summary A coupled formulation for three-phase capillary pressure and relative permeability for implicit compositional reservoir simulation is presented. The formulation incorporates primary, secondary, and tertiary saturation functions. Hysteresis and miscibility are applied simultaneously to both capillary pressure and relative permeability. Two alternative three-phase capillary pressure formulations are presented: the first as described by Hustad (2002) and the second that incorporates six representative two-phase capillary pressures in a saturation-weighting scheme. Consistency is ensured for all three two-phase boundary conditions through the application of two-phase data and normalized saturations. Simulation examples of water-alternating-gas (WAG) injection are presented for water-wet and mixed-wet saturation functions. 1D homogeneous and 2D and 3D heterogeneous examples are employed to demonstrate some model features and performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Olugbenga Falode ◽  
Edo Manuel

An understanding of the mechanisms by which oil is displaced from porous media requires the knowledge of the role of wettability and capillary forces in the displacement process. The determination of representative capillary pressure (Pc) data and wettability index of a reservoir rock is needed for the prediction of the fluids distribution in the reservoir: the initial water saturation and the volume of reserves. This study shows how wettability alteration of an initially water-wet reservoir rock to oil-wet affects the properties that govern multiphase flow in porous media, that is, capillary pressure, relative permeability, and irreducible saturation. Initial water-wet reservoir core samples with porosities ranging from 23 to 33%, absolute air permeability of 50 to 233 md, and initial brine saturation of 63 to 87% were first tested as water-wet samples under air-brine system. This yielded irreducible wetting phase saturation of 19 to 21%. The samples were later tested after modifying their wettability to oil-wet using a surfactant obtained from glycerophtalic paint; and the results yielded irreducible wetting phase saturation of 25 to 34%. From the results of these experiments, changing the wettability of the samples to oil-wet improved the recovery of the wetting phase.


2007 ◽  
Vol 10 (06) ◽  
pp. 597-608 ◽  
Author(s):  
Liping Jia ◽  
Cynthia Marie Ross ◽  
Anthony Robert Kovscek

Summary A 3D pore-network model of two-phase flow was developed to compute permeability, relative permeability, and capillary pressure curves from pore-type, -size, and -shape information measured by means of high-resolution image analysis of diatomaceous-reservoir-rock samples. The diatomite model is constructed using pore-type proportions obtained from image analysis of epoxy-impregnated polished samples and mercury-injection capillary pressure curves for diatomite cores. Multiple pore types are measured, and each pore type has a unique pore-size and throat-size distribution that is incorporated in the model. Network results present acceptable agreement when compared to experimental measurements of relative permeability. The pore-network model is applicable to both drainage and imbibition within diatomaceous reservoir rock. Correlation of network-model results to well log data is discussed, thereby interpolating limited experimental results across the entire reservoir column. Importantly, our method has potential to predict the petrophysical properties for reservoir rocks with either limited core material or those for which conventional experimental measurements are difficult, unsuitable, or expensive. Introduction Model generation for reservoir simulation requires accurate entering of physical properties such as porosity, permeability, initial water saturation, residual-oil saturation, capillary pressure functions, and relative permeability curves. These functions and parameters are necessary to estimate production rate and ultimate oil recovery, and thereby optimize reservoir development. Accurate measurement and representation of such information is, therefore, essential for reservoir modeling. Relative permeability and capillary pressure curves are the most important constitutive relations to represent multiphase flow. Often, it is difficult to sample experimentally the range of relevant multiphase-flow behavior of a reservoir. In addition to the availability of rock samples, measurements are frequently time consuming to conduct, and conventional techniques are not suitable for all rock types (Schembre and Kovscek 2003). It is impossible, therefore, to measure all the unique relative permeability functions of different reservoir-rock types and variations within a rock type. This lack of constitutive information limits the accuracy of reservoir simulators to predict oil recovery. Simply put, other available data must be queried for their relevance to multiphase flow and must be used to interpret the available relative permeability and capillary pressure information.


Sign in / Sign up

Export Citation Format

Share Document