Investigation on reduction in consequences of adding antioxidants into the algae biodiesel blend as a CI engine fuel

Fuel ◽  
2020 ◽  
Vol 276 ◽  
pp. 117993
Author(s):  
S. Saravanan ◽  
N. Krishnamoorthy
Fuel ◽  
2021 ◽  
Vol 287 ◽  
pp. 119438
Author(s):  
Saravanan Subramani ◽  
Krishnamoorthy Natarajan ◽  
G. Lakshmi Narayana Rao

2003 ◽  
Vol 125 (3) ◽  
pp. 820-826 ◽  
Author(s):  
A. K. Agarwal ◽  
J. Bijwe ◽  
L. M. Das

Biodiesel is prepared using linseed oil and methanol by the process of transesterification. Use of linseed oil methyl ester (LOME) in a compression ignition engine was found to develop a highly compatible engine-fuel system with low emission characteristics. Two similar engines were operated using optimum biodiesel blend and mineral diesel oil, respectively. These were subjected to long-term endurance tests. Lubricating oil samples drawn from both engines after a fixed interval were subjected to elemental analysis. Quantification of various metal debris concentrations was done by atomic absorption spectroscopy (AAS). Wear metals were found to be about 30% lower for a biodiesel-operated engine system. Lubricating oil samples were also subjected to ferrography indicating lower wear debris concentrations for a biodiesel-operated engine. The additional lubricating property of LOME present in the fuel resulted in lower wear and improved life of moving components in a biodiesel-fuelled engine. However, this needed experimental verification and quantification. A series of experiments were thus conducted to compare the lubricity of various concentrations of LOME in biodiesel blends. Long duration tests were conducted using reciprocating motion in an SRV optimol wear tester to evaluate the coefficient of friction, specific wear rates, etc. The extent of damage, coefficient of friction, and specific wear rates decreased with increase in the percentage of LOME in the biodiesel blend. Scanning electron microscopy was conducted on the surfaces exposed to wear. The disk and pin using 20% biodiesel blend as the lubricating oil showed lesser damage compared to the one subjected to diesel oil as the lubricating fluid, confirming additional lubricity of biodiesel.


2020 ◽  
Vol 33 ◽  
pp. 2897-2900
Author(s):  
T. Dharmaprabhakaran ◽  
S. Karthikeyan ◽  
M. Periyasamy ◽  
G. Mahendran

Author(s):  
Ahmed I. EL-Seesy ◽  
Mohamed Nour ◽  
Tiemin Xuan ◽  
Zhixia He ◽  
Hamdy Hassan

Abstract The main concerns of utilizing jojoba biodiesel in CI engines is that it has a high viscosity and high NOx formation. Therefore, this article purposes in endeavoring to improve the combustion and emission parameters of a CI engine working with diesel/jojoba biodiesel blend and higher alcohols under various engine loads. The higher alcohols typically are n-butanol, n-heptanol, and n-octanol, which are combined with 50% diesel, 40% of jojoba biodiesel at a volume portion of 10%, and they are designated as DJB, DJH, and DJO respectively. The jojoba biodiesel is manufactured via a transesterification process with facilitating mechanical dispersion. The findings display that there is a drop in pmax and HRR for DJB, DJH, and DJO blends compared to pure diesel fuel, whereas the combustion duration and ignition delay are extended. The brake specific fuel consumption is enlarged. Concerning engine emissions, the NOx formation is reduced while the CO, UHC, and soot emissions are increased for DJB, DJH, and DJO mixtures. It can be deduced that combining high fractions of jojoba biodiesel with C4, C7, and C8 alcohols have the feasible to accomplish low NOx formation in the interim having high thermal efficiency level.


Sign in / Sign up

Export Citation Format

Share Document