The effect of diesel fuel-tall oil/ethanol/methanol/isopropyl/n-butanol/fusel oil mixtures on engine performance and exhaust emissions

Fuel ◽  
2020 ◽  
Vol 281 ◽  
pp. 118671 ◽  
Author(s):  
Salih Özer
Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


2019 ◽  
Vol 26 (5) ◽  
pp. 4570-4587 ◽  
Author(s):  
Amit Jhalani ◽  
Dilip Sharma ◽  
Shyam Lal Soni ◽  
Pushpendra Kumar Sharma ◽  
Sumit Sharma

2016 ◽  
Vol 7 (6) ◽  
pp. 972 ◽  
Author(s):  
Zulkifli Abdul Majid ◽  
Rahmat Mohsin ◽  
Noor Shawal Nasri

2012 ◽  
Vol 518-523 ◽  
pp. 3263-3266
Author(s):  
Jazair Yahya Wira ◽  
Tan Wee Choon ◽  
Samion Syahrullail ◽  
Noge Hirofumi ◽  
Mazlan Said ◽  
...  

Production of alternative diesel fuel has been increasing drastically in many Asian countries. Since the reduction of petroleum production by Organization of Petroleum Exporting Countries (OPEC), the research on alternative fuel for diesel engine has gain interest. The target of this project is to substitute some percentage usage of conventional diesel fuel with waste substance without compromising on engine performance and exhaust emissions. This study has produced two type of alternative fuels. A test fuel consisting 30% of water into diesel fuel with the existence of additive or emulsifier (span 80) is called as DW Emul. Another test fuel which is named as DHW Emul produced by blending 30% of water into a mixture consisting of 20% of waste hydraulic oil and 80% of diesel fuel with the existence of span 80. The engine performance and exhaust emissions of DW Emul and DHW Emul are measured and has been compared with the conventional diesel fuel. A 600cc single cylinder direct injection diesel engine was used. The experiment was conducted at 1500 rpm with variable engine loads. Results show that DHW Emul and DW Emul has higher brake specific fuel consumption (BSFC). However, by considering the total use of diesel fuel contained in DW Emul, the quantity was lower at all loads. The same goes for DHW Emul at low load but deteriorate at high load which show slightly higher compared with of using 100% conventional diesel fuel. DHW Emul has suppressed CO emission that is usually high of using emulsion fuel to the level similar to conventional diesel fuel. NOx and Smoke emissions for DHW Emul are lower than conventional diesel. The use of DHW Emul can give significant reduction of NOx and Smoke emissions without deterioration of CO emission.


Energy has become a crucial factor for humanity to continue the economic growth and maintain high standard of living especially after industrial revolution. “Fossil fuels are still the main source of energy. But the endless consumption of fossil fuels will bring the reserve to an end in near future. As a result fuel prices are soaring because of diminishing supply than demand. So researchers world over are in constant search of alternate fuels in the last three to four years, aimed at reducing CO2 emissions and global dependency on fossil fuels. The use of vegetable oils as a fuel in diesel engine causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is blending of fuel. In this study, a mix of 5%, 10%,15%, 20%, 25% sesame oil and diesel fuel was used as alternative fuel in a direct injection diesel engine. Diesel engine performance and exhaust emissions were investigated and compared with the diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil diesel fuel are close to the values obtained from diesel fuel and the amount of exhaust emissions are lower than those of diesel fuel. Hence it is seen that mix of sesame oil 20% and 80% diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly” fuel in terms of emission parameters.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1309
Author(s):  
María D. Redel-Macías ◽  
David E. Leiva-Candia ◽  
José A. Soriano ◽  
José M. Herreros ◽  
Antonio J. Cubero-Atienza ◽  
...  

Oxygenated fuels, in this case short carbon-chain alcohols, have been investigated as alternative fuels to power compression ignition engines. A major advantage of short-chain alcohols is that they can be produced from renewable resources, i.e., cultivated commodities or biomass-based biorefineries. However, before entering the market, the effects of short-chain alcohols on engine performance, exhaust emissions, noise and sound quality need to be understood. This work sheds light on the relationship between the physicochemical properties of the alcohol/diesel fuel blends (ethanol and 1-propanol) on engine performance, exhaust emissions and, for the first time, on noise and sound quality. It has been demonstrated that when the content of alcohol in blends increased, soot and soluble organic material emissions drastically decreased, mainly due to the increase of oxygen content in the fuel. Reduction in soot emissions combined with higher thermodynamic efficiency of alcohol fuels, with respect to diesel fuel, enable their utilization on compression ignition engines. There is also an improvement in the soot-NOx trade off, leading to large reductions on soot with a small effect on NOx emissions. The oxygen content within the fuel reduces CO and THC emissions at extra-urban driving operation conditions. However, hydrocarbons and CO emissions increased at urban driving conditions, due to the high heat of vaporization of the alcohol fuels which reduces cylinder temperature worsening fuel atomization, vaporization and mixing with air being more significant at lower cylinder temperature conditions (low engine loads and speeds). Similarly, the higher the presence of alcohol in the blend, the higher the noise emitted by the engine due to their low tendency to auto-ignition. The optimization of alcohol quantity and the calibration of engine control parameters (e.g., injection settings) which is out of the scope of this work, will be required to overcome noise emission penalty. Furthermore, under similar alcohol content in the blend (10% v/v), the use of propanol is preferred over ethanol, as it exhibits lower exhaust emissions and better sound quality than ethanol.


Sign in / Sign up

Export Citation Format

Share Document