scholarly journals Performance of Diesel Engine using Bio-Fuel From Sesame Oil

Energy has become a crucial factor for humanity to continue the economic growth and maintain high standard of living especially after industrial revolution. “Fossil fuels are still the main source of energy. But the endless consumption of fossil fuels will bring the reserve to an end in near future. As a result fuel prices are soaring because of diminishing supply than demand. So researchers world over are in constant search of alternate fuels in the last three to four years, aimed at reducing CO2 emissions and global dependency on fossil fuels. The use of vegetable oils as a fuel in diesel engine causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is blending of fuel. In this study, a mix of 5%, 10%,15%, 20%, 25% sesame oil and diesel fuel was used as alternative fuel in a direct injection diesel engine. Diesel engine performance and exhaust emissions were investigated and compared with the diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil diesel fuel are close to the values obtained from diesel fuel and the amount of exhaust emissions are lower than those of diesel fuel. Hence it is seen that mix of sesame oil 20% and 80% diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly” fuel in terms of emission parameters.

Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


2016 ◽  
Vol 68 (5) ◽  
pp. 554-560 ◽  
Author(s):  
De-Xing Peng

Purpose Energy is the prime mover of economic growth and is vital to the sustenance of a modern economy. Future economic growth depends heavily on the long-term availability of energy from sources that are affordable, accessible and environmentally friendly. Regulating the sulfur content in diesel fuel is expected to reduce the lubricity of these fuels, which may result in increased wear and damage of fuel injection systems in diesel engines. Design/methodology/approach The tribological properties of the biodiesels as additive in pure petro-diesel are studied by ball-on-ring wear tester to find optimal concentration, and the mechanism of the reduction of wear and friction will be investigated by optical microscopy. Findings Studies have shown that low concentrations of biodiesel blends are more effective as lubricants because of their superior polarity. Using biodiesel as a fuel additive in a pure petroleum diesel fuel improves engine performance and exhaust emissions. The high biodegradability and superior lubricating property of biodiesel when used in compression ignition engines renders it an excellent fuel. Originality/value This detailed experimental investigation confirms that biodiesel can substitute mineral diesel without any modification in the engine. The use of biofuels as diesel engine fuels can play a vital role in helping the developed and developing countries to reduce the environmental impact of fossil fuels.


2012 ◽  
Vol 518-523 ◽  
pp. 3263-3266
Author(s):  
Jazair Yahya Wira ◽  
Tan Wee Choon ◽  
Samion Syahrullail ◽  
Noge Hirofumi ◽  
Mazlan Said ◽  
...  

Production of alternative diesel fuel has been increasing drastically in many Asian countries. Since the reduction of petroleum production by Organization of Petroleum Exporting Countries (OPEC), the research on alternative fuel for diesel engine has gain interest. The target of this project is to substitute some percentage usage of conventional diesel fuel with waste substance without compromising on engine performance and exhaust emissions. This study has produced two type of alternative fuels. A test fuel consisting 30% of water into diesel fuel with the existence of additive or emulsifier (span 80) is called as DW Emul. Another test fuel which is named as DHW Emul produced by blending 30% of water into a mixture consisting of 20% of waste hydraulic oil and 80% of diesel fuel with the existence of span 80. The engine performance and exhaust emissions of DW Emul and DHW Emul are measured and has been compared with the conventional diesel fuel. A 600cc single cylinder direct injection diesel engine was used. The experiment was conducted at 1500 rpm with variable engine loads. Results show that DHW Emul and DW Emul has higher brake specific fuel consumption (BSFC). However, by considering the total use of diesel fuel contained in DW Emul, the quantity was lower at all loads. The same goes for DHW Emul at low load but deteriorate at high load which show slightly higher compared with of using 100% conventional diesel fuel. DHW Emul has suppressed CO emission that is usually high of using emulsion fuel to the level similar to conventional diesel fuel. NOx and Smoke emissions for DHW Emul are lower than conventional diesel. The use of DHW Emul can give significant reduction of NOx and Smoke emissions without deterioration of CO emission.


2021 ◽  
Vol 8 (2) ◽  
pp. 986-1001
Author(s):  
Abu Saleh Ahmed ◽  
Nur Adibah Abdul Rahim ◽  
Md Rezaur Rahman ◽  
Mohammad Shahril Osman

Fossil fuels are widely recognized as non-renewable energy resources. They play an important role in our daily life because they can be used in various applications such as the production of soap and cosmetics, as an energy source and for transportation. However, the use of these fossil fuels causes negative impacts on humans, animals and the environment. These happen due to the emission of harmful gases into the atmosphere. Not only that, the available fossil fuels are decreasing due to continuous usage by humans. As a result, researchers investigated finding alternative ways to overcome this issue by replacing diesel fuel with biodiesel. Biodiesel is more environmentally friendly relative to diesel fuel. A research study was conducted involving biodiesel. The purpose of this study was to produce Jatropha Biodiesel, as well as evaluate the properties of Jatropha biodiesel and diesel Jatropha biodiesel blended with propanol. The production of Jatropha Biodiesel was done by using two-step transesterification which was an acid-catalyzed transesterification and base-catalyzed transesterification. Different methanol to oil ratios had been used to identify the best ratio to reduce the FFA content in the CJO. 9:1 was the best methanol to oil ratio and then tested with different catalyst weights. It was found that an increase in the weight of catalyst might reduce the amount of biodiesel yield. In addition, this study also investigated and predicted the engine performance and characteristics of diesel Jatropha biodiesel blended with propanol at different blending ratios. The properties of these test fuels were studied. Bomb calorimeter, Fourier Transform Infrared Spectroscopy (FT-IR) analysis and Diesel Engine test were done. Thus, the calorific value and functional group of the test fuels were identified and determined. The calorific value of biodiesel was much higher than conventional diesel due to the existence of oxygen. This could be proven as the analysis of FT-IR also showed a (C=O) bond which reflected the presence of oxygen. The oxygen helped in combustion besides reducing the hydrocarbon released into the air. These findings were then reflected and related to the performance of diesel engines.  


2018 ◽  
Vol 225 ◽  
pp. 04025
Author(s):  
Mohd. Herzwan Hamzah ◽  
Azri Alias ◽  
Rizalman Mamat ◽  
Abdul Adam Abdullah ◽  
Agung Sudrajad ◽  
...  

Fossil fuel is non-renewable energy. This type of energy sources are widely used in many critical areas such as industrial application and vehicle application. Realizing this fact, many researches are conducted to produce alternative energy sources to reduce the dependence to fossil fuel for energy generation. As for example, fuels that produced from natural sources such as palm, rapeseed and jathropa are commonly used as alternative fuel especially for transportation purpose. Apart from natural sources, waste source such as used tires also can be utilized to produce alternative fuel. In this paper, the engine performance of diesel engine operating with unblended tire derived fuel (TDF) are analyzed and compared to diesel fuel. The experiment is conducted using a single cylinder, direct injection diesel engine. The engine operates at variable engine speed while constant load exerted to the engine. The performance parameters that are analyzed in the experiment includes engine power, engine torque, combustion pressure and exhaust gas temperature. Results from the experiment shows that diesel engine can operate with unblended TDF. However, TDF is not suitable for high engine speed applications. Furthermore, TDF produce lower performance output compared to diesel fuel.


Author(s):  
Bobbili Prasadarao ◽  
Aditya Kolakoti ◽  
Pudi Sekhar

: This paper presents the production of biodiesel from three different non edible oils of Pongamia, Mahua and Jatropha as an alternative fuel for diesel engine. Biodiesel is produced by followed transesterification process, using catalyst sodium hydroxide (NaOH) and methyl alcohol (CH3OH). A single cylinder four stroke three-wheeler auto diesel engine is used to evaluate the exhaust emission characteristics at a constant speed of 1500rpm with varying loads. Diesel as a reference fuel and cent percent of Pongamia Methyl Ester (PME), Mahua Methyl Ester (MME) and Jatropha Methyl Ester (JME) are used as an alternative fuel. The physicochemical properties of biodiesels are within the limits of international standards (ASTM D6751) noticeably. The results of tested biodiesels offer low exhaust emissions compared to diesel fuel, owing to presence of molecular oxygen and high cetane number. At maximum load the NOx emission reduced by 18.41% for JME, 17.46% for MME and 7.61% for PME. Low levels of CO emissions are recorded for JME (66%) followed by MME (33%) and PME (22%). Unburnt hydrocarbon emissions were reduced by 85.75% for JME and MME, for PME 14.28% reduction is observed. Exhaust smoke emissions are also reduced for PME and MME by 18.84%, for JME 14.49%. As a conclusion, it is observed that all the methyl esters exhibit significant reduction in harmful exhaust emissions compared to diesel fuel and JME is noted as a better choice.


Author(s):  
H Masjuki ◽  
M Z Abdulmuin ◽  
H S Sii

The major drawback of vegetable oil fuels is their high viscosity. Various conventional approaches to reducing the viscosity of vegetable oils are studied theoretically and experimentally. An attempt to reduce the viscosity of the palm oil methyl esters (POME) by preheating the fuel was performed and a comparison on the basis of its projected chance of leading to ‘diesel-like’ combustion was also carried out with conventional diesel fuel. It was observed that by preheating the POME fuel above the conventional temperature, the engine performance, especially the brake power output and the exhaust emissions characteristics, is improved significantly, approaching diesellike' performance. This is mainly attributed to the fact that as the fuel is preheated the viscosity is reduced close to ordinary diesel (OD) fuel. This will result in improved spray and atomization characteristics. Torque, brake power, specific fuel consumption, exhaust emissions and brake thermal efficiencies were measured and calculated. The potential for improved engine performance and reduction in emissions levels was demonstrated.


2015 ◽  
Vol 773-774 ◽  
pp. 425-429 ◽  
Author(s):  
Nur Atiqah Ramlan ◽  
Abdul Adam Abdullah ◽  
Mohd Herzwan Hamzah ◽  
Nur Fauziah Jaharudin ◽  
Rizalman Mamat

The depletion of fossil fuels as well as the rises of greenhouse gases had caused most government worldwide to follow the international energy policies for the use of biodiesel. One of the economical sources for biodiesel production is waste cooking oil. The use of waste cooking oil is more sustainable if they can perform similarly to conventional diesel fuel. This paper deals with the experimental study carried out to evaluate the engine performance and exhaust emission of diesel engine operated by biodiesel from waste cooking oil at various engine speed. The biodiesel used are known as B5, which contains of 5% of waste cooking oil and 95% of diesel fuel. The other one is B20, which contains of 20% of waste cooking oil plus 80% of diesel. Diesel was used as a comparison purposes. The results show that power and torque for B5 give the closest trend to diesel. In terms of heat release, diesel still dominates the highest value compared to B5 and B20. For exhaust emission, B5 and B20 showed improvement in the reduction of NOx and PM.


2012 ◽  
Author(s):  
Md. Nurun Nabi ◽  
Md. Wahid Chowdhury

This research work investigates diesel combustion and exhaust emissions with additives addition to conventional diesel fuel in a four-stroke naturally aspirated direct injection (DI) diesel engine. The additives include DGM, and liquid cerium. The results show that with the addition of DGM to diesel fuel, brake specific energy consumption (BSEC) and all diesel emissions are significantly reduced. The volumetric blending ratios of additives to diesel fuel are 0, 25, 50, 75 and 100%. All emissions including smoke emissions decrease with the increase in oxygen content in the fuel and it is noted that smoke emission completely disappeared at an oxygen content of 36 wt–%. The reason for improvement in BSEC with the addition of additives to base diesel fuel is the improvement of degree of constant volume combustion, and the reduction of the cooling loss. Engine noise and odor concentrations are remarkably reduced with diesel-additive blends. Significant improvement in BSEC and exhaust emissions is not only found at medium load condition but also at high load condition. Key words: Diesel engine, DGM, emissions, BSEC, and cooling loss


Sign in / Sign up

Export Citation Format

Share Document