Effect of pre-main-post diesel injection strategy on greenhouse gas and nitrogen oxide emissions of natural gas/diesel dual-fuel engine at high load conditions

Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121110
Author(s):  
Amin Yousefi ◽  
Hongsheng Guo ◽  
Shouvik Dev ◽  
Brian Liko ◽  
Simon Lafrance
Fuel ◽  
2021 ◽  
Vol 290 ◽  
pp. 120071
Author(s):  
Amin Yousefi ◽  
Hongsheng Guo ◽  
Madjid Birouk ◽  
Brian Liko ◽  
Simon Lafrance

Author(s):  
Hongsheng Guo ◽  
Brian Liko

Diesel engines have been widely used due to the higher reliability and superior fuel conversion efficiency. However, they still generate significant amount of carbon dioxide (CO2) and particulate matter (PM) emissions. Natural gas is a low carbon and clean fuel that generates less CO2 and PM emissions than diesel during combustion. Replacing diesel by natural gas in internal combustion engines help reduce both CO2 and PM emissions. Natural gas – diesel dual fuel combustion is a practical and efficient way to replace diesel by natural gas in internal combustion engines. One concern for dual fuel combustion engines is the diesel injector tip temperature increase with increasing natural gas fraction. This paper reports an experimental investigation on the diesel injector tip temperature variation and combustion performance of a natural gas – diesel dual fuel engine at medium and high load conditions. The natural gas fraction was changed from zero to 90% in the experiment. The results suggest that the injector tip temperature increased with increasing natural gas fraction at a given diesel injection timing or with advancing the diesel injection timing at a given natural gas fraction. However, the injector tip temperature never exceeded 250 °C in the whole experimental range. The effect of natural gas fraction on combustion performance depended on engine load and diesel injection timing.


Fuel ◽  
2021 ◽  
Vol 300 ◽  
pp. 121012
Author(s):  
Frengki Mohamad Felayati ◽  
Semin ◽  
Beny Cahyono ◽  
Rosli Abu Bakar ◽  
Madjid Birouk

Author(s):  
Hongsheng Guo ◽  
Brian Liko ◽  
W. Stuart Neill

As an inexpensive and low carbon fuel, the combustion of natural gas reduces fuel cost and generates less carbon dioxide emissions than diesel and gasoline. Natural gas is also a clean fuel that generates less particulate matter emissions than diesel during combustion. Replacing diesel by natural gas in internal combustion engines is of great interest for industries. Dual fuel combustion is an efficient way to apply natural gas in internal combustion engines. An issue that to a certain extent offsets the advantage of lower carbon dioxide emissions in natural gas–diesel dual fuel engines is the higher methane emissions and low engine efficiency at low load conditions. In order to seek strategies to improve the performance of dual fuel engines at low load conditions, an experimental investigation was conducted to investigate the effect of diesel injection split on combustion and emissions performance of a heavy duty natural gas–diesel dual fuel engine at a low load. The operating conditions, such as engine speed, load, intake temperature and pressure, were well controlled during the experiment. The effects of diesel injection split ratio and timings were investigated. The engine efficiency and emissions data, including particulate matter, nitric oxides, carbon monoxide and methane were measured and analyzed. The results show that diesel injection split significantly reduced the peak pressure rise rate. As a result, diesel injection split enabled the engine to operate at a more optimal condition at which engine efficiency and methane emissions could be significantly improved compared to single diesel injection.


2017 ◽  
Vol 19 (6) ◽  
pp. 682-696 ◽  
Author(s):  
Zhenkuo Wu ◽  
Christopher J Rutland ◽  
Zhiyu Han

In this study, natural gas and diesel dual-fuel combustion under a medium load was numerically optimized for a heavy-duty engine using a genetic algorithm optimization approach. This approach employed a micro-genetic algorithm optimization code coupled with an engine computational fluid dynamics code to perform the optimization. Initially, an optimization using premixed natural gas with double direct injection of diesel fueling strategy was conducted using both the stock piston bowl shape and a bathtub shaped piston. Low emissions and moderate combustion with thermal efficiency close to 50% were achieved for both piston configurations by optimizing the premixed natural gas to diesel fuel ratio, exhaust gas recirculation fraction, diesel injection timing, injection pressure, and injection split ratio. Based on this optimum point, a parametric study was performed to understand the effects of the optimization parameters. The results show that high efficiency and clean combustion (indicated thermal efficiency ≥ 45%, NOx ≤ 0.4 g/kW h, peak pressure rise rate ≤ 15 bar/°) can be achieved over a wide range of parameters. The optimized result of a single diesel injection strategy was also evaluated and compared with the double injection strategy. The results indicate that the single injection strategy is also able to yield near 50% thermal efficiency and clean combustion. Compared to the double injection strategy, the single injection strategy shows increased combustion losses due to reduced diesel fuel near the cylinder centerline. In addition, the bathtub shaped piston has lower heat transfer losses relative to the stock piston, leading to improved fuel efficiency. However, the piston shape shows less impact than other parameters on the overall combustion and emission characteristics for both injection strategies.


Sign in / Sign up

Export Citation Format

Share Document