Kinetics of pyrolysis of cotton stalk using model-fitting and model-free methods

Fuel ◽  
2021 ◽  
Vol 303 ◽  
pp. 121285
Author(s):  
Ramesh Naidu Mandapati ◽  
Praveen Kumar Ghodke
2020 ◽  
Vol 15 (1) ◽  
pp. 253-263
Author(s):  
Sharmeela Matali ◽  
Norazah Abd Rahman ◽  
Siti Shawalliah Idris ◽  
Nurhafizah Yaacob

Torrefaction is a thermal conversion method extensively used for improving the properties of biomass. Usually this process is conducted within a temperature range of 200-300 °C under an inert atmosphere with residence time up to 60 minutes. This work aimed to study the kinetic of thermal degradation of oil palm frond pellet (OPFP) as solid biofuel for bioenergy production. The kinetics of OPFP during torrefaction was studied using frequently used iso-conversional model fitting (Coats-Redfern (CR)) and integral model-free (Kissinger-Akahira-Sunose (KAS)) methods in order to provide effective apparent activation energy as a function of conversion. The thermal degradation experiments were conducted at four heating rates of 5, 10, 15, and 20 °C/min in a thermogravimetric analyzer (TGA) under non-oxidative atmosphere. The results revealed that thermal decomposition kinetics of OPFP during torrefaction is significantly influenced by the severity of torrefaction temperature. Via Coats-Redfern method, torrefaction degradation reaction mechanism follows that of reaction order with n = 1. The activation energy values were 239.03 kJ/mol and 109.28 kJ/mol based on KAS and CR models, respectively. Copyright © 2020 BCREC Group. All rights reserved 


2020 ◽  
Vol 38 (11) ◽  
pp. 1259-1268
Author(s):  
NL Panwar ◽  
Bhautik Gajera ◽  
Sudhir Jain ◽  
BL Salvi

The pyrolysis and co-pyrolysis behaviours of cotton stalk (CS), torrefied cotton stalk (TCS) and mined coal, as single fuels, and their blends, have been examined through thermogravimetric analysis. Biomass has been torrefied at 250°C for 45 min to enhance physicochemical properties, and then mixed with mined coal for co-pyrolysis. Thermal degradation of CS and TCS is characterized by a reaction. However, this is not the case for mined coal, which shows a single-stage reaction. The thermal degradation of all blends was done in three stages: dehydration; biomass and small mined coal; and lignin or mined coal. A similar trend emerged for mass loss of individual fuels, which depended mainly on their ratios in the blend. The kinetics of pyrolysis and co-pyrolysis of all fuels were calculated at 20°Cmin−1 heating rate using the Coats−Redfern model-fitting method.


2011 ◽  
Vol 525 (1-2) ◽  
pp. 31-39 ◽  
Author(s):  
Jintao Wan ◽  
Zhi-Yang Bu ◽  
Cun-Jin Xu ◽  
Hong Fan ◽  
Bo-Geng Li

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Chandra Prakash Singh ◽  
Abhishek Singh

Complex of nickel perchlorate with n-propylamine has been synthesised with molecular formula [Ni(n-pa)3(ClO4)(H2O)]ClO4. It has been characterised by elemental analysis, thermogravimetry, UV-VIS, and IR spectroscopic data. Thermal properties have been investigated by thermogravimetry (TG) in static air and by simultaneous thermogravimetry-derivative thermogravimetry-differential thermal analysis (TG-DTG-DTA) in flowing nitrogen atmosphere. Kinetics of thermolysis has been analysed applying model-fitting and model-free isoconversional method on isothermal TG data recorded at five different temperatures. To observe the response of complex towards fast heating, explosion delay time has been recorded at various temperatures and kinetics of explosion has been studied using these data.


2003 ◽  
Vol 92 (9) ◽  
pp. 1779-1792 ◽  
Author(s):  
Deliang Zhou ◽  
Eric A. Schmitt ◽  
Geoff G. Zhang ◽  
Devalina Law ◽  
Sergey Vyazovkin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 281-293
Author(s):  
Pengfei Li ◽  
Jian Zhang ◽  
Biwei Luo ◽  
Yan Li ◽  
Jun Ji ◽  
...  

Abstract The effects of particle size on the apparent kinetics of carbothermal reduction process of phosphate rock were studied by non-isothermal thermogravimetric analyses. Phosphate rock of various particle size was reacted with coke and silica under high purity argon atmosphere. The apparent kinetic model and parameters of carbothermal reduction reaction of phosphate rock with different particle sizes were derived by combination of model-free (Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Tang, Starink) and model-fitting (Coats-Redfern, Master-plots) methods. The results showed that the obtained apparent activation energy of reaction reduces from 371.74 kJ/mol to 321.11 kJ/mol as the particle size of phosphate rock decreasing from 100–150 μm to 38–48 μm. The reaction apparent kinetics was found to follow shrinking-core model and the conversion degree function equation is G ( α ) = 1 − ( 1 − α ) 1 2 G\left( \alpha \right) = 1 - {\left( {1 - \alpha } \right)^{{1 \over 2}}} (α is conversion degree and G(α) is integral form of conversion degree function).


Sign in / Sign up

Export Citation Format

Share Document