scholarly journals Renewable natural gas as climate-neutral energy carrier?

Fuel ◽  
2021 ◽  
pp. 122547
Author(s):  
Bob van der Zwaan ◽  
Remko Detz ◽  
Nicole Meulendijks ◽  
Pascal Buskens
2021 ◽  
Vol 13 (4) ◽  
pp. 1618
Author(s):  
Anneliese Dyer ◽  
Amelia Christine Miller ◽  
Brianna Chandra ◽  
Juan Galindo Maza ◽  
Carley Tran ◽  
...  

With traditional natural gas being one of the top options for heating in the United States and the present threat of climate change, there is a demand for an alternative clean fuel source. A Renewable Natural Gas Implementation Decision-Making Conceptual Model was created to provide a framework for considering the feasibility of renewable natural gas (RNG) projects and applied to New Jersey, specifically investigating landfills and wastewater treatment plants (WWTPs). Data from the US EPA’s Landfill Methane Outreach Program and New Jersey’s Department of Environmental Protection Sewage Sludge databases were used to identify seven landfills and 22 WWTPs as possible locations for RNG projects. Landfills were found to have a higher potential for producing RNG, on average potentially producing enough RNG to heat 12,792 homes per year versus 1227 for the average WWTP. Additionally, landfills, while having higher capital expenses, have lower projected payback periods, averaging 5.19 years compared to WWTP’s 11.78 years. WWTPs, however, generally are located closer to existing natural gas pipelines than landfills and when they produce more than 362 million standard cubic feet per year (MMSCFY) of biogas are financially feasible. RNG projects at Monmouth County Reclamation Center, Ocean County Landfill, and Passaic Valley Sewerage Commission WWTP show the greatest potential. Greenhouse gas emission reductions from RNG projects at these facilities utilizing all available biogas would be 1.628 million metric tons CO2 equivalents per year, synonymous to removing over 351,000 passenger vehicles from the road each year. In addition, expanding federal and state incentives to encompass RNG as a heating fuel is necessary to reduce financial barriers to RNG projects throughout the US. Overall, this paper supports the hypothesized conceptual model in examining the feasibility of RNG projects through examples from New Jersey and confirms the potential for RNG production utilizing existing waste streams.


2019 ◽  
Vol 35 (11) ◽  
pp. 12-18 ◽  
Author(s):  
Robert Foxen ◽  
James Fitzgerald

Author(s):  
Wahiba Yaïci ◽  
Michela Longo

Abstract With environmental concerns and limited natural resources, there is a need for cleaner sources of energy in the transportation sector. Renewable natural gas (RNG) is being considered as a potential fuel for heavy-duty applications due to its comparable usage to diesel and gasoline in vehicles. The idea of compressed RNG vehicles is being proposed especially because it will potentially significantly reduce harmful emissions into the environment. This initiative is taken in order to decrease vehicle emissions and support Canada’s commitments to the climate plans reinforcing active transportation infrastructure, in concert with new transit infrastructure, and zero emission vehicles. This study examines the feasibility of implementing a nationwide network of compressed RNG refuelling infrastructure in order to accommodate a conversion of Canada’s long-haul, heavy-duty truck fleet from diesel fuel to RNG. Two methods, Constant Traffic and Variable Traffic, along with data about compressed RNG infrastructure and vehicles, were developed and used to predict fuelling requirements for Canada’s long-haul, heavy-duty truck fleet. Then, a detailed economic analysis was conducted on various test cases to estimate how different variables impact the final selling price of RNG. This provided insight with the understanding of what factors go into pricing RNG and if it can compete against diesel in the trucking market. Results disclosed that the cost to purchase RNG is the greatest factor in the final selling price of compressed RNG. Due to the variability in RNG production however, there is no precise cost, which makes predictions difficult. However, results revealed that it is possible for compressed RNG to be competitive with diesel, with the mean compressed RNG price being 16.5% cheaper than diesel, before being taxed. Future studies should focus on the feasibility of the production of RNG and the associated costs, with emphasis on the Canadian landscape. An in-depth analysis on operational and maintenance costs for compressed RNG refuelling stations may also provide predictions that are more accurate.


2020 ◽  
Vol 18 (1) ◽  
pp. 23-28
Author(s):  
G.E. Ergazieva ◽  
M.M. Telbayeva ◽  
K. Dossumov ◽  
A.I. Niyazbayeva

Hydrogen production is one of the most promising ways to develop the energy sector of the future. Hydrogen does not exist in nature in its elemental form and therefore, it must be obtained from hydrocarbon, water or any other hydrogen-containing compounds. The variety of potential sources of raw materials for hydrogen production is one of the important reasons, in which hydrogen is such a promising energy carrier. The article describes methods for preparing the basic energy carrier, hydrogen from natural gas, ethanol etc. Among various types of raw materials, bioethanol is very attractive because of its relatively high hydrogen content, availability, as well as safety during storage and handling.


Sign in / Sign up

Export Citation Format

Share Document