Identification of two Pleurotus ostreatus blue light receptor genes (PoWC-1 and PoWC-2) and in vivo confirmation of complex PoWC-12 formation through yeast two hybrid system

2020 ◽  
Vol 124 (1) ◽  
pp. 8-14
Author(s):  
Yuancheng Qi ◽  
Xiankai Sun ◽  
Lin Ma ◽  
Qing Wen ◽  
Liyou Qiu ◽  
...  
2001 ◽  
Vol 276 (15) ◽  
pp. 11980-11987 ◽  
Author(s):  
Steven A. Haney ◽  
Elizabeth Glasfeld ◽  
Cynthia Hale ◽  
David Keeney ◽  
Zhizhen He ◽  
...  

The recruitment of ZipA to the septum by FtsZ is an early, essential step in cell division inEscherichia coli. We have used polymerase chain reaction-mediated random mutagenesis in the yeast two-hybrid system to analyze this interaction and have identified residues within a highly conserved sequence at the C terminus of FtsZ as the ZipA binding site. A search for suppressors of a mutation that causes a loss of interaction (ftsZD373G) identified eight different changes at two residues within this sequence.In vitro, wild type FtsZ interacted with ZipA with a high affinity in an enzyme-linked immunosorbent assay, whereas FtsZD373Gfailed to interact. Two mutant proteins examined restored this interaction significantly.In vivo, the alleles tested are significantly more toxic than the wild typeftsZand cannot complement a deletion. We have shown that a fusion, which encodes the last 70 residues of FtsZ in the two-hybrid system, is sufficient for the interaction with FtsA and ZipA. However, when the wild type sequence is compared with one that encodes FtsZD373G, no interaction was seen with either protein. Mutations surrounding Asp-373 differentially affected the interactions of FtsZ with ZipA and FtsA, indicating that these proteins bind the C terminus of FtsZ differently.


2000 ◽  
Vol 238 (1-2) ◽  
pp. 161-172 ◽  
Author(s):  
Antje Pörtner-Taliana ◽  
Marijane Russell ◽  
Karen J Froning ◽  
Paul R Budworth ◽  
John D Comiskey ◽  
...  

2003 ◽  
Vol 77 (1) ◽  
pp. 769-775 ◽  
Author(s):  
Pritsana Chomchan ◽  
Shi-Fang Li ◽  
Yukio Shirako

ABSTRACT We investigated the interaction of Rice grassy stunt tenuivirus (RGSV) nonstructural protein p5, a protein of 22 kDa encoded on vRNA 5, with all 12 RGSV proteins by using a GAL4 transcription activator-based yeast two-hybrid system. The p5 protein interacted only with itself and not with any other viral protein; the interacting domains were localized within the N-terminal 96 amino acids of p5. The p5-p5 interaction was reproduced in an Sos recruitment-mediated yeast two-hybrid system as well in by far-Western blots. Native p5 protein extracted from RGSV-infected rice tissue was detected in a large complex with a molecular mass of approximately 260 kDa composed of 12 molecules of p5 or a p5 oligomer with an unidentified host factor(s).


2003 ◽  
Vol 185 (8) ◽  
pp. 2393-2401 ◽  
Author(s):  
Yi-Ying Lee ◽  
Chiung-Fang Chang ◽  
Chueh-Ling Kuo ◽  
Meng-Ching Chen ◽  
Chien Hung Yu ◽  
...  

ABSTRACT The Escherichia coli ClpYQ (HslUV) is an ATP-dependent protease that consists of an ATPase large subunit with homology to other Clp family ATPases and a peptidase small subunit related to the proteasomal β-subunits of eukaryotes. Six identical subunits of both ClpY and ClpQ self-assemble into an oligomeric ring, and two rings of each subunit, two ClpQ rings surrounded by single ClpY rings, form a dumbbell shape complex. The ClpYQ protease degrades the cell division inhibitor, SulA, and a positive regulator of capsule transcription, RcsA, as well as RpoH, a heat shock sigma transcription factor. Using the yeast-two hybrid system, we explored the in vivo protein-protein interactions of the individual subunits of the ClpYQ protease involved in self-oligomerization, as well as in recognition of specific substrates. Interactions were detected with ClpQ/ClpQ, ClpQ/ClpY, and ClpY/SulA. No interactions were observed in experiments with ClpY/ClpY, ClpQ/RcsA, and ClpQ/SulA. However, ClpY, lacking domain I (ClpYΔI) was able to interact with itself and with intact ClpY. The C-terminal region of ClpY is important for interaction with other ClpY subunits. The previously defined PDZ-like domains at the C terminus of ClpY, including both D1 and D2, were determined to be indispensable for substrate binding. Various deletion and random point mutants of SulA were also made to verify significant interactions with ClpY. Thus, we demonstrated in vivo hetero- and homointeractions of ClpQ and ClpY molecules, as well as a direct association between ClpY and substrate SulA, thereby supporting previous in vitro biochemical findings.


Sign in / Sign up

Export Citation Format

Share Document