blue light receptor
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 22)

H-INDEX

35
(FIVE YEARS 3)

2022 ◽  
Vol 8 (1) ◽  
pp. 50
Author(s):  
Yifan Li ◽  
Xiya Meng ◽  
Degang Guo ◽  
Jia Gao ◽  
Qiwei Huang ◽  
...  

Light is perceived by photoreceptors in fungi and further integrated into the stress-activated MAPK HOG pathway, and thereby potentially activates the expression of genes for stress responses. This indicates that the precise control of light conditions can likely improve the conidial yield and stress resistance to guarantee the low cost and long shelf life of Trichoderma-based biocontrol agents and biofertilizers. In this study, effects of wavelengths and intensities of light on conidial yield and stress tolerance to osmotic, oxidative and pH stresses in Trichoderma guizhouense were investigated. We found that 2 μmol photons/(m2 × s) of blue light increased the conidial yield more than 1000 folds as compared to dark condition and simultaneously enhanced conidial stress resistance. The enhanced conidial stress resistance is probably due to the upregulated stress-related genes in blue light, which is under the control of the blue light receptor BLR1 and the MAP kinase HOG1.


2021 ◽  
Author(s):  
Shaista Naqvi ◽  
Qin He ◽  
Franziska Trusch ◽  
Huishan Qiu ◽  
Jasmine Pham ◽  
...  

2021 ◽  
pp. 100245
Author(s):  
Baiqiang Yan ◽  
Zongju Yang ◽  
Guanhua He ◽  
Yexing Jing ◽  
Huixue Dong ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Roger Revilla-i-Domingo ◽  
Vinoth Babu Veedin Rajan ◽  
Monika Waldherr ◽  
Günther Prohaczka ◽  
Hugo Musset ◽  
...  

Rhabdomeric opsins (r-opsins) are light-sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct features of cephalic and non-cephalic of r-opsin1-expressing cells. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. Prompted by the latter, we investigated Platynereis putative mechanotransducer, and found nompc and pkd2.1 co-expressed with r-opsin1 in TRE cells by HCR RNA-FISH. To further assess the role of r-Opsin1 in these cells, we studied its signaling properties and unraveled that r-Opsin1 is a Gαq-coupled blue-light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells, light - mediated by r-Opsin1 - adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep learning-based quantitative behavioral analysis for animal trunk movements, and identify a light- and r-Opsin-1-dependent fine-tuning of the worm's undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results provide new data on peripheral cell types of likely light-sensory/mechanosensory nature. These results point towards a concept in which such a multisensory cell type evolved to allow for fine-tuning of mechanosensation by light. This implies that light-independent mechanosensory roles of r-opsins may have evolved secondarily.


2021 ◽  
Author(s):  
Louise Norén Lindbäck ◽  
Oliver Artz ◽  
Amanda Ackermann ◽  
Ullas V. Pedmale

ABSTRACTAll organisms undergo growth, which is precisely controlled by exogenous and endogenous signals. Unchecked growth often leads to neoplasia and other developmental defects, severely affecting an organism’s fitness. Light is a vital exogenous signal sensed by cryptochrome (CRY) blue light receptors to modulate growth and the circadian clock in plants and animals. Yet, how CRYs interpret light quantity to regulate growth in plants remains poorly understood. We show that UBP12 and UBP13 deubiquitinases physically interact with CRY2 in light. UBP12/13 negatively regulated CRY2 protein levels by promoting its ubiquitination and turnover to fine-tune growth. Unexpectedly, the destabilization of CRY2 by UBP12/13 is contrary to the general view that deubiquitinases stabilize proteins by preventing their degradation. Growth and development were explicitly affected in blue light when UBP12/13 was disrupted or overexpressed, indicating their role alongside CRY2. UBP12/13 also interacted and stabilized COP1, which is partially required for the turnover of CRY2. Despite decades of studies on deubiquitinases, the knowledge on how they are regulated is limited. Our study offers an insight into how exogenous signals and their receptors regulate deubiquitinase activity by protein-protein interaction. Altogether, our results provide a new module of cryptochromes and deubiquitinases in sensing and interpreting light cues to control growth at the most appropriate time.


2021 ◽  
Vol 22 (4) ◽  
pp. 1735
Author(s):  
Tomoki Shibuya ◽  
Manabu Nishiyama ◽  
Kazuhisa Kato ◽  
Yoshinori Kanayama

FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) is a blue-light receptor whose function is related to flowering promotion under long-day conditions in Arabidopsis thaliana. However, information about the physiological role of FKF1 in day-neutral plants and even the physiological role other than photoperiodic flowering is lacking. Thus, the FKF1 homolog SlFKF1 was investigated in tomato, a day-neutral plant and a useful model for plants with fleshy fruit. It was confirmed that SlFKF1 belongs to the FKF1 group by phylogenetic tree analysis. The high sequence identity with A. thaliana FKF1, the conserved amino acids essential for function, and the similarity in the diurnal change in expression suggested that SlFKF1 may have similar functions to A. thaliana FKF1. CONSTANS (CO) is a transcription factor regulated by FKF1 and is responsible for the transcription of genes downstream of CO. cis-Regulatory elements targeted by CO were found in the promoter region of SINGLE FLOWER TRUSS (SFT) and RIN, which are involved in the regulation of flowering and fruit ripening, respectively. The blue-light effects on SlFKF1 expression, flowering, and fruit lycopene concentration have been observed in this study and previous studies. It was confirmed in RNA interference lines that the low expression of SlFKF1 is associated with late flowering with increased leaflets and low lycopene concentrations. This study sheds light on the various physiological roles of FKF1 in plants.


2021 ◽  
Author(s):  
Roger Revilla-i-Domingo ◽  
Vinoth Babu Veedin Rajan ◽  
Monika Waldherr ◽  
Günther Prohaczka ◽  
Hugo Musset ◽  
...  

ABSTRACTRhabdomeric Opsins (r-Opsins) are light-sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-Opsins cells were non-photosensory. Our profiling of cephalic and non-cephalic r-opsin1-expressing cells of the marine bristleworm Platynereis dumerilii reveals shared and distinct features. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. We determine that Pdu-r-Opsin1 is a Gαq-coupled blue-light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells, light – mediated by r-Opsin1 – adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep learning-based quantitative behavioral analysis for animal trunk movements, and identify a light-and r-Opsin-1-dependent fine-tuning of the worm’s undulatory movements in headless trunks, which are known to require mechanosensory feedback.Our results suggest an evolutionary concept in which r-Opsins act as ancient, light-dependent modulators of mechanosensation, and suggest that light-independent mechanosensory roles of r-Opsins likely evolved secondarily.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yonghong Ding ◽  
Alexey S. Kiryutin ◽  
Ziyue Zhao ◽  
Qian-Zhao Xu ◽  
Kai-Hong Zhao ◽  
...  

Abstract The solid-state photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect generates non-Boltzmann nuclear spin magnetization, referred to as hyperpolarization, allowing for high gain of sensitivity in nuclear magnetic resonance (NMR). Well known to occur in photosynthetic reaction centers, the effect was also observed in a light-oxygen-voltage (LOV) domain of the blue-light receptor phototropin, in which the functional cysteine was removed to prevent photo-chemical reactions with the cofactor, a flavin mononucleotide (FMN). Upon illumination, the FMN abstracts an electron from a tryptophan to form a transient spin-correlated radical pair (SCRP) generating the photo-CIDNP effect. Here, we report on designed molecular spin-machines producing nuclear hyperpolarization upon illumination: a LOV domain of aureochrome1a from Phaeodactylum tricornutum, and a LOV domain named 4511 from Methylobacterium radiotolerans (Mr4511) which lacks an otherwise conserved tryptophan in its wild-type form. Insertion of the tryptophan at canonical and novel positions in Mr4511 yields photo-CIDNP effects observed by 15N and 1H liquid-state high-resolution NMR with a characteristic magnetic-field dependence indicating an involvement of anisotropic magnetic interactions and a slow-motion regime in the transient paramagnetic state. The heuristic biomimetic design opens new categories of experiments to analyze and apply the photo-CIDNP effect.


Sign in / Sign up

Export Citation Format

Share Document