Hydrogen production via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system

2008 ◽  
Vol 89 (12) ◽  
pp. 1306-1316 ◽  
Author(s):  
C. Wu ◽  
Q. Huang ◽  
M. Sui ◽  
Y. Yan ◽  
F. Wang
2010 ◽  
Vol 33 (12) ◽  
pp. 2021-2028 ◽  
Author(s):  
P. Lan ◽  
Q. Xu ◽  
M. Zhou ◽  
L. Lan ◽  
S. Zhang ◽  
...  

2014 ◽  
Vol 39 (25) ◽  
pp. 13128-13135 ◽  
Author(s):  
Shaomin Liu ◽  
Jinglin Zhu ◽  
Mingqiang Chen ◽  
Wenping Xin ◽  
Zhonglian Yang ◽  
...  

Author(s):  
Yishuang Wang ◽  
Mingqiang Chen ◽  
Tian Liang ◽  
Jie Yang ◽  
Zhonglian Yang ◽  
...  

In this research, catalytic steam reforming acetic acid derived from the aqueous portion of bio-oil for hydrogen production was investigated by using different Ni/ATC (Attapulgite Clay) catalysts prepared by precipitation, impregnation and mechanical blending methods. The fresh and reduced catalysts were characterized by XRD, N2 adsorption-desorption, TEM and H2-TPR. The comprehensive results demonstrated that the interaction between active metallic Ni and ATC carrier was significantly improved in Ni/ATC catalyst prepared by precipitation method, and in which the mean Ni particle size was the smallest (~13 nm) resulted in the highest metal dispersion (7.5%). The catalytic performance of the three catalysts was evaluated through the process of steam reforming of acetic acid in a fixed-bed reactor under atmospheric pressure at two different temperatures, such as 550 ℃ and 650 ℃. Results showed that the Ni/ATC (PM-N/ATC) prepared by precipitation method, achieved the highest H2 yield of ~82% and little lower acetic acid conversion efficiency of ~85% than that (~95%) of Ni/ATC (IM-NATC) prepared by impregnation method. In addition, the deactivation catalysts after reaction for 4 h were analyzed by XRD, TGA-DTG and TEM, which demonstrated that the catalyst deactivation was not caused by the amount of carbon deposition, but owed to the significant agglomeration and sintering of Ni particles in the carrier.


2010 ◽  
Vol 24 (12) ◽  
pp. 6456-6462 ◽  
Author(s):  
Qingli Xu ◽  
Ping Lan ◽  
Baozhen Zhang ◽  
Zhizhong Ren ◽  
Yongjie Yan

2011 ◽  
Vol 347-353 ◽  
pp. 2231-2235 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

Catalytic steam reforming of bio-oil is an economically feasible route producing renewable hydrogen. Ni/MgO-La2O3-Al2O3 catalyst was prepared with Ni as active agent, Al2O3 as support and MgO, La2O3 as promoters. The experiments were carried out in a fixed-bed reactor. The content of Ni, calcination temperature, and calcinations time, were investigated with hydrogen yield as index. The optimal preparation conditions were concluded as follows: the Ni content 18%, the calcination temperature 8500C and the calcinations time 6 h.


2006 ◽  
Vol 20 (5) ◽  
pp. 2155-2163 ◽  
Author(s):  
Panagiotis N. Kechagiopoulos ◽  
Spyros S. Voutetakis ◽  
Angeliki A. Lemonidou ◽  
Iacovos A. Vasalos

Fuel ◽  
2009 ◽  
Vol 88 (5) ◽  
pp. 920-925 ◽  
Author(s):  
C.G. Soni ◽  
Z. Wang ◽  
A.K. Dalai ◽  
T. Pugsley ◽  
T. Fonstad

2014 ◽  
Vol 493 ◽  
pp. 39-44 ◽  
Author(s):  
Tuan Amran Tuan Abdullah ◽  
Walid Nabgan ◽  
Mohd Johari Kamaruddin ◽  
Ramli Mat ◽  
Anwar Johari ◽  
...  

Catalytic steam reforming of acetic acid using bimetallic catalysts of 5 wt.% nickel and 5 wt.% cobalt supported on Lanthanum (III) oxide (La2O3) for hydrogen production was investigated in a micro fixed bed reactor. The reactor was of quartz tube with a 10 mm inside diameter. The effect of catalyst dilution on the reaction was studied. Silicon carbide was used as the dilution material. The experiments were conducted at atmospheric pressure and temperatures ranging from 500 to 700°C. The complete conversion of acetic acid to product gases has been observed at 550°C and 700°C for diluted and non-diluted catalysts respectively. It shows that catalyst dilution had a profound effect on the conversion of acetic acid at low temperature (550°C) whilst high temperature of 700°C was required for the non-diluted catalyst. The product gas distributions are similar when using both diluted and non-diluted catalysts.


2012 ◽  
Vol 550-553 ◽  
pp. 558-562
Author(s):  
Qi Wang ◽  
Long Guo ◽  
Xin Bao Li

Ethanol was selected as a model compound of bio-oil. Pd/HZSM-5 catalyst with 5%wt Pd was prepared by wet impregnation method. The steam reforming experiment for hydrogen production was carried out on a fixed bed reactor. The carbon conversion, carbon selectivity of product gas and H2 yield was calculated according the experimental resultsl. It has been found that the best performance was obtained at T=700°C, S/C=9.2 and GC1HSV=346h-1. At this condition, the hydrogen yield and potential hydrogen yield can be as high as 58.1% and 84.3%. The results show that the addition of Pd to HZSM-5 can improve the reforming performance and increase the hydrogen yield.


Sign in / Sign up

Export Citation Format

Share Document