Electricity generation using biogas from organic fraction of municipal solid waste generated in provinces of China: Techno-economic and environmental impact analysis

2020 ◽  
Vol 203 ◽  
pp. 106381 ◽  
Author(s):  
Dan Cudjoe ◽  
Myat Su Han ◽  
Aditya P. Nandiwardhana
2021 ◽  
pp. 0734242X2110134
Author(s):  
Rasangika Thathsaranee Weligama Thuppahige ◽  
Sandhya Babel

The management of organic fraction of municipal solid waste (OFMSW) has continued to be a significant challenge in Sri Lanka. Anaerobic digestion is one of the management options of OFMSW. However, it generates unavoidable environmental impacts that should be addressed. The present study focuses to assess the environmental impact of a full-scale anaerobic digestion plant in Sri Lanka from a life cycle perspective. The inventory data were obtained from direct interviews and field measurements. Environmental burdens were found to be in terms of global warming potential (230 kg CO2 eq) ozone formation on human health (6.15 × 10−6 kg NO x eq), freshwater eutrophication (2.92 × 10−3 kg P eq), freshwater ecotoxicity (9.27 × 10−5 kg 1,4 DCB eq), human carcinogenic toxicity (3.98 × 10−4 kg 1,4 DCB eq), land use (1.32 × 10−4 m2 a crop eq) and water consumption (2.23 × 10−2 m3). The stratospheric ozone depletion, fine particulate matter formation, ozone formation on terrestrial ecosystems, terrestrial acidification, marine eutrophication, ecotoxicity (terrestrial and marine), human non-carcinogenic toxicity, mineral resource scarcity and fossil resource scarcity, were avoided due to electricity production. Results show that the direct gaseous emissions and digestate generation should be addressed in order to reduce the burdens from the anaerobic digestion plant. Finally, the results of the study could help in policy formation and decision-making in selecting future waste management systems in Sri Lanka.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 752 ◽  
Author(s):  
Rabiatul Adawiyah Ali ◽  
Nik Nor Liyana Nik Ibrahim ◽  
Hon Loong Lam

The generation of municipal solid waste (MSW) is increasing globally every year, including in Malaysia. Approaching the year 2020, Malaysia still has MSW disposal issues since most waste goes to landfills rather than being utilized as energy. Process network synthesis (PNS) is a tool to optimize the conversion technologies of MSW. This study optimizes MSW conversion technologies using a PNS tool, the “process graph” (P-graph). The four highest compositions (i.e., food waste, agriculture waste, paper, and plastics) of MSW generated in Malaysia were optimized using a P-graph. Two types of conversion technologies were considered, biological conversion (anaerobic digestion) and thermal conversion (pyrolysis and incinerator), since limited data were available for use as optimization input. All these conversion technologies were compared with the standard method used: landfilling. One hundred feasible structure were generated using a P-graph. Two feasible structures were selected from nine, based on the maximum economic performance and minimal environmental impact. Feasible structure 9 was appointed as the design with the maximum economic performance (MYR 6.65 billion per annum) and feasible structure 7 as the design with the minimal environmental impact (89,600 m3/year of greenhouse gas emission).


2016 ◽  
Vol 2 (2) ◽  
pp. 39-44
Author(s):  
Oscar Cabeza ◽  
◽  
Alfredo Alonso ◽  
Yoel Lastre ◽  
Jorge Medina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document