Tore-Supra infrared thermography system, a real steady-state diagnostic

2005 ◽  
Vol 74 (1-4) ◽  
pp. 879-883 ◽  
Author(s):  
D. Guilhem ◽  
J.L. Bondil ◽  
B. Bertrand ◽  
C. Desgranges ◽  
M. Lipa ◽  
...  
2014 ◽  
Vol 14 (04) ◽  
pp. 1450009 ◽  
Author(s):  
Andrew Yee Tak Leung ◽  
Hong Xiang Yang ◽  
Ping Zhu

This paper is concerned with the steady state bifurcations of a harmonically excited two-member plane truss system. A two-degree-of-freedom Duffing system having nonlinear fractional derivatives is derived to govern the dynamic behaviors of the truss system. Viscoelastic properties are described by the fractional Kelvin–Voigt model based on the Caputo definition. The combined method of harmonic balance and polynomial homotopy continuation is adopted to obtain steady state solutions analytically. A parametric study is conducted with the help of amplitude-response curves. Despite its seeming simplicity, the mechanical system exhibits a wide variety of structural responses. The primary and sub-harmonic resonances and chaos are found in specific regions of system parameters. The dynamic snap-through phenomena are observed when the forcing amplitude exceeds some critical values. Moreover, it has been shown that, suppression of undesirable responses can be achieved via changing of viscosity of the system.


2003 ◽  
Vol 81 (8) ◽  
pp. 765-773 ◽  
Author(s):  
James Duffin ◽  
Safraaz Mahamed

Exposure to hypoxia, whether for short or prolonged periods or for repeated episodes, produces alterations in the ventilatory responses. This review presents evidence that these adaptations are likely to be mediated by adaptations in the respiratory chemoreflexes, particularly the peripheral chemoreflex, and proposes models of respiratory control explaining the observed changes in ventilation. After a brief introduction to the respiratory control system, a graphical model is developed that illustrates the operation of the system in the steady state, which will be used later. Next, the adaptations in ventilatory responses to hypoxia that have been observed are described, and methods of measuring the alterations in the chemoreflexes that might account for them are discussed. Finally, experimental data supporting the view that changes in the activity of the peripheral chemoreflex can account for the ventilatory adaptations to hypoxia are presented and incorporated into models of chemoreflex behaviour during exposures to hypoxia of various durations.Key words: respiration, chemoreflexes, hypoxia, adaptation, models.


1982 ◽  
Vol 203 (3) ◽  
pp. 541-549 ◽  
Author(s):  
P Nicholls ◽  
G A Chanady

Titration of cyanide-incubated cytochrome c oxidase (ox heart cytochrome aa3) with ferrocytochrome c or with NNN'N'-tetramethyl-p-phenylenediamine initially introduces two reducing equivalents per mol of cytochrome aa3. The first equivalent reduces the cytochrome a haem iron; the second reducing equivalent is not associated with reduction of the 830 nm chromophores (e.p.r.-detectable copper) but is probably required for reduction of the e.p.r.-undetectable copper. Excess reductant introduces a third reducing equivalent into the cyanide complex of cytochrome aa3. During steady-state respiration in the presence of cytochrome c and ascorbate, the 830 nm chromophore is almost completely oxidized. It is reduced more slowly than cytochrome a on anaerobiosis. In the presence of formate or azide, some reduction at 830 nm can be seen in the steady state; in an oxygen-pulsed system, a decrease in steady-state reduction of cytochromes c and a is associated with ab increased reduction of the 830 nm species. In the formate-inhibited system the reduction of a3 on anaerobiosis shows a lag phase, the duration of which corresponds to the time taken for the 830 nm species to be reduced. It is concluded that the e.p.r.-undetectable copper (CuD) is reduced early in the reaction sequence, whereas the detectable copper (CUD) is reduced late. The latter species is probably that responsible for reduction of the cytochrome a3 haem. The magnetic association between undetectable copper and the a3 haem may not imply capability for electron transfer, which occurs more readily between cytochrome a3 and the 830 nm species.


1990 ◽  
Vol 27 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Behnam Pourbabai

An algorithm is suggested for approximating the performance of a D/G/K loss system with deterministic input, generally distributed processing time, K heterogeneous servers, the random access processing discipline, and retrials in steady state. In loss systems with retrials, the units which at the instants of their arrival at the system find all the servers busy, are not lost: those units retry to be processed by merging with the incoming arrival units. In this system, a fraction of the units which have not initially been processed will be allowed to leave the system. The performance of this system in steady state is approximated by a recursive technique.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Q. J. Duan ◽  
J. L. Du ◽  
B. Y. Duan ◽  
A. F. Tang

A steady-state dynamic model of a cable in air is put forward by using some tensor relations. For the dynamic motion of a long-span Cable-Driven Parallel Robot (CDPR) system, a driven cable deployment and retrieval mathematical model of CDPR is developed by employing lumped mass method. The effects of cable mass are taken into account. The boundary condition of cable and initial values of equations is founded. The partial differential governing equation of each cable is thus transformed into a set of ordinary differential equations, which can be solved by adaptive Runge-Kutta algorithm. Simulation examples verify the effectiveness of the driven cable deployment and retrieval mathematical model of CDPR.


1994 ◽  
Vol 74 (1) ◽  
pp. 163-219 ◽  
Author(s):  
B. Rippe ◽  
B. Haraldsson

In this review we summarized the evidence favoring the concept that the major plasma proteins are passively transported across vascular walls through water-filled pathways by means of convection and diffusion. With regard to solute transport, a majority of microvascular walls seems to show a bimodal size selectivity. This implies the presence of a high frequency of functional small pores, restricting proteins, and an extremely low number of non-size-selective pathways, permitting the passage of macromolecules from blood to tissue, here denoted large pores. We discussed the general behavior of such a heteroporous system. A major consequence of two-pore heteroporosity is that large-solute transport must mainly occur due to convection through large pores at low filtration rates, that is, at normal or even zero lymph flows. Indeed, convection must be the predominating transport mode for most solutes across large pores when the net filtration rate is zero. Under these (transient) conditions, the convective leak of macromolecules across large pores will be counterbalanced by absorption of essentially protein-free fluid through protein-restrictive pores. In a heteroporous membrane, proteins can thus be transported by solvent drag across vascular walls in the absence of a net convection. Normally the steady-state transcapillary fluid flow (lymph flow) is about equally partitioned among small and large pores, which makes lymph essentially a "half and half" mixture of protein-free ultrafiltrate and plasma. With increasing fluid flows, however, the plasma filtrate will be progressively diluted, eventually reaching a protein concentration largely in proportion to the fractional hydraulic conductance accounted for by the large pores (alpha L). Under these high lymph flow conditions, not only the large-pore transport but also the small-pore transport (of smaller macromolecules) will become convective. At low lymph flows, however, the small-pore transport of smaller macromolecules is usually mostly diffusive. An important implication of capillary heteroporosity is that single-pore formalism is inadequate for correctly evaluating the capillary sieving characteristics. With the use of homoporous transport formalism, the "lumped" macromolecular PS and sigma will therefore vary as a function of transcapillary fluid flow (Jv). However, it is approximately correct to use single-pore formalism for conditions when Jv is very high during steady state. Thus, if minimal sieving coefficients can be measured for macromolecules, then these values will accurately reflect (1 - sigma).(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
S. Ali Al-Mawsawi ◽  
Mohammed R. Qader

It has recently been illustrated that the Unified Power Flow Controller (UPFC) installation location plays an important role in effecting nonlinearly in the UPFC steady state performance of the system. A Pulse Width Modulation (PWM) based on UPFC as a voltage regulator is modeled and analyzed to investigate the optimal position in the transmission line. From the study made in this paper, it is shown that the location of UPFC plays a significant part in effecting nonlinearly. It is also found from the simulation results that the distribution of the active and reactive power flows can be controlled by varying the modulation index of the device. 


2017 ◽  
Vol 88 (4) ◽  
pp. 044903 ◽  
Author(s):  
Anton Greppmair ◽  
Benedikt Stoib ◽  
Nitin Saxena ◽  
Caroline Gerstberger ◽  
Peter Müller-Buschbaum ◽  
...  

Author(s):  
J. Jeknić-Dugić ◽  
M. Arsenijević ◽  
M. Dugić

Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not allow for introducing a properly defined generator of the evolution nor does it represent a quantum channel. On the other hand, the map is linear, positive, trace preserving and unital as well as completely positive, but is not divisible and therefore non-Markovian. Nevertheless, we provide quantitative criteria for dynamical emergence of time-coarse-grained Markovianity, for exact dynamics of an open system, as well as for operationally defined approximation of a closed or open many-particle system. A closed system never reaches a steady state, whereas an open system may reach a unique steady state given by the Lüders–von Neumann formula; where the smaller the open system, the faster a steady state is attained. These generic findings extend the standard open quantum systems theory and substantially tackle certain cosmological issues.


Sign in / Sign up

Export Citation Format

Share Document