Mechanical properties of similar and dissimilar weldments of RAFMS and AISI 316L (N) SS prepared by electron beam welding process

2014 ◽  
Vol 89 (7-8) ◽  
pp. 1605-1610 ◽  
Author(s):  
S.K. Albert ◽  
C.R. Das ◽  
Shiju Sam ◽  
P. Mastanaiah ◽  
M. Patel ◽  
...  
2014 ◽  
Vol 89 (11) ◽  
pp. 2672-2678 ◽  
Author(s):  
C.R. Das ◽  
S.K. Albert ◽  
Shiju Sam ◽  
P. Mastanaiah ◽  
G.M.S.K. Chaitanya ◽  
...  

10.30544/545 ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 279-292
Author(s):  
Akash Doomra ◽  
Sandeep Singh Sandhu ◽  
Beant Singh

The applicability of ferritic stainless steel is restricted due to its low weldability, and this can be attributed to the severe grain growth in the weld zone during the solidification of the weld pool and formation of fully ferritic structure. This study aims to investigate the weldability of 18 mm thick AISI 409 ferritic stainless steel plates using an electron beam welding process without the use of filler metal. The joints were investigated for metallography characterization (microstructure, macrostructure, and microhardness) and mechanical behavior (tensile strength and impact toughness) in as-welded condition and after post-weld heat treatment at 550 ºC for 75 minutes. The weld zone exhibited large columnar grains in the direction perpendicular to the weld centerline and got refined after post-weld heat treatment. The ultimate tensile strength, yield strength, and microhardness of the weld zone were found higher than the base metal. The impact toughness of weld zone was found to be reduced by 45%, but the post-weld heat treatment improved the toughness by 40%. Results revealed that the electron beam welding process could be successfully employed for welding of AISI 409 ferritic stainless steel, which will increase its application range that requires thicker section of welded plates. Post-weld heat treatment was found to be advantageous for improving the microstructure and mechanical properties.


2020 ◽  
Vol 21 (2) ◽  
pp. 206-214
Author(s):  
V. S. Tynchenko ◽  
◽  
I. A. Golovenok ◽  
V. E. Petrenko ◽  
A. V. Milov ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
A. R. Sufizadeh ◽  
S. A. A. Akbari Mousavi

Dissimilar electron beam welding of 316L austenitic stainless steel and AISI 4340 low alloy high strength steel has been studied. Studies are focused on effect of beam current on weld geometry, optical and scanning electron microscopy, X-ray diffraction of the weld microstructures, and heat affected zone. The results showed that the increase of beam current led to increasing depths and widths of the welds. The optimum beam current was 2.8 mA which shows full penetration with minimum width. The cooling rates were calculated for optimum sample by measuring secondary dendrite arm space and the results show that high cooling rates lead to austenitic microstructure. Moreover, the metallography result shows the columnar and equiaxed austenitic microstructures in weld zone. A comparison of HAZ widths depicts the wider HAZ in the 316L side. The tensile tests results showed that the optimum sample fractured from base metal in AISI 316L side with the UTS values is much greater than the other samples. Moreover, the fractography study presents the weld cross sections with dimples resembling ductile fracture. The hardness results showed that the increase of the beam current led to the formation of a wide softening zone as HAZ in AISI 4340 side.


Sign in / Sign up

Export Citation Format

Share Document