Phase transformations in reduced-activation duplex alloy Fe52Mn30Cr18 under isothermal heat treatment

2019 ◽  
Vol 147 ◽  
pp. 111249
Author(s):  
Weitao Cao ◽  
Jingping Xin ◽  
Wenyi Ding ◽  
Chao Wang ◽  
Mingjie Zheng ◽  
...  
1997 ◽  
Vol 105 (1228) ◽  
pp. 1109-1114 ◽  
Author(s):  
Yong-Taeg O ◽  
Kentaro YOSHIHARA ◽  
Hiromichi TAKEBE ◽  
Kenji MORINAGA

2001 ◽  
Vol 16 (11) ◽  
pp. 3116-3123 ◽  
Author(s):  
Hiromitsu Kozuka ◽  
Atsushi Higuchi

BaTiO3-coating films were prepared from a solution containing poly(vinylpyrrolidone) (PVP) of molar composition Ba(CH3COO)2:Ti(OC2H5)4:PVP:CH3COOH:H2O: C2H5OH = 1:1:0.5:27:4:5, via nonrepetitive, single-step dip-coating. The gel films were found to be converted into BaTiO3 films via evaporation of the solvent and CH3COOH below 210 °C, decomposition of PVP at 210–360 °C, decomposition of CH3COO− below 440 °C, and crystallization at 500–610 °C. The decomposition of PVP was accompanied by the progress of the condensation reaction, which resulted in significant reduction in film thickness. When the gel films were heated isothermally at 700 °C, crack-free BaTiO3 films as thick as 0.9 μm were obtained. When the gel films were heated isothermally at 360 °C and then at 700 °C, the film became denser. Higher dielectric constants around 290 were found for the film that underwent the isothermal heat treatment at 360 °C. A slower rate of PVP decomposition was thought to be the key for the film densification.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 778 ◽  
Author(s):  
Omid Hajizad ◽  
Ankit Kumar ◽  
Zili Li ◽  
Roumen H. Petrov ◽  
Jilt Sietsma ◽  
...  

Wheel–rail contact creates high stresses in both rails and wheels, which can lead to different damage, such as plastic deformation, wear and rolling contact fatigue (RCF). It is important to use high-quality steels that are resistant to these damages. Mechanical properties and failure of steels are determined by various microstructural features, such as grain size, phase fraction, as well as spatial distribution and morphology of these phases in the microstructure. To quantify the mechanical behavior of bainitic rail steels, uniaxial tensile experiments and hardness measurements were performed. In order to characterize the influence of microstructure on the mechanical behavior, various microscopy techniques, such as light optical microscopy (LOM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD), were used. Three bainitic grades industrially known as B360, B1400 plus and Cr-Bainitic together with commonly used R350HT pearlitic grade were studied. Influence of isothermal bainitic heat treatment on the microstructure and mechanical properties of the bainitic grades was investigated and compared with B360, B1400 plus, Cr-Bainitic and R350HT in as-received (AR) condition from the industry. The results show that the carbide-free bainitic steel (B360) after an isothermal heat treatment offers the best mechanical performance among these steels due to a very fine, carbide-free bainitic microstructure consisting of bainitic ferrite and retained austenite laths.


2016 ◽  
Vol 869 ◽  
pp. 411-415
Author(s):  
Dimitry V. Bubnoff ◽  
Mariana M.O. Carvalho ◽  
Carlos Roberto Xavier ◽  
Gláucio S. da Fonseca ◽  
José Adilson de Castro

In the present work, the martensite formation during heat treatment of 1026 steel was studied in order to acquire process knowledge and reinforce the effectiveness of infrared thermography method to evaluate the temperature distributions. Several tests were carried out and monitored by an infrared camera and thermocouples. Martensite fraction was evaluated with the aid of the Koistinen-Marburger model and adequate parameters describing phase transformations were obtained for 1026 steel samples. This research revealed the need of model adjustment in order to accurately describe the martensite transformation kinetics according to experimental results.


Sign in / Sign up

Export Citation Format

Share Document