Potential of lower-limb muscles to accelerate the body during cerebral palsy gait

2012 ◽  
Vol 36 (2) ◽  
pp. 194-200 ◽  
Author(s):  
Tomas A. Correa ◽  
Anthony G. Schache ◽  
H. Kerr Graham ◽  
Richard Baker ◽  
Pam Thomason ◽  
...  
2013 ◽  
Vol 109 (8) ◽  
pp. 1996-2006 ◽  
Author(s):  
Hidehito Tomita ◽  
Yoshiki Fukaya ◽  
Kenji Totsuka ◽  
Yuri Tsukahara

This study aimed to determine whether individuals with spastic diplegic cerebral palsy (SDCP) have deficits in anticipatory inhibition of postural muscle activity. Nine individuals with SDCP (SDCP group, 3 female and 6 male, 13–24 yr of age) and nine age- and sex-matched individuals without disability (control group) participated in this study. Participants stood on a force platform, which was used to measure the position of the center of pressure (CoP), while holding a light or heavy load in front of their bodies. They then released the load by abducting both shoulders. Surface electromyograms were recorded from the rectus abdominis, erector spinae (ES), rectus femoris (RF), medial hamstring (MH), tibialis anterior (TA), and gastrocnemius (GcM) muscles. In the control group, anticipatory inhibition before load release and load-related modulation of the inhibition were observed in all the dorsal muscles recorded (ES, MH, and GcM). In the SDCP group, similar results were obtained in the trunk muscle (ES) but not in the lower limb muscles (MH and GcM), although individual differences were seen, especially in MH. Anticipatory activation of the ventral lower limb muscles (RF and TA) and load-related modulation of the activation were observed in both participant groups. CoP path length during load release was longer in the SDCP group than in the control group. The present findings suggest that individuals with SDCP exhibit deficits in anticipatory inhibition of postural muscles at the dorsal part of the lower limbs, which is likely to result in a larger disturbance of postural equilibrium.


2020 ◽  
Vol 10 (5) ◽  
pp. 1210-1215
Author(s):  
Tanyan Xie ◽  
Yan Zhang ◽  
Jan Awrejcewicz ◽  
Yaodong Gu

Objective: Although it is widely reported that high-heeled changes gait pattern in terms of motions and forces throughout the body, the biomechanics while high-heeled squatting has not been examined. This study aimed to explore the acute effects of different heel heights on muscle morphology and plantar loading during high-heeled squatting. Methods: Fourteen healthy females performed squats on high-heeled shoes with different heights: flat (0.8 cm), moderate (4.0 cm), and high (7.0 cm). Muscle thickness and pennation angle of selected lower limb muscles were measured by ultrasound imaging. Plantar pressure distribution and COP trajectory during an entire squatting motion were recorded. Results: As the heel height increased, the average and peak pressure consistently increased in the heel and hallux regions, while reversely changed in MF and LF regions. In addition, the selected lower limb muscles except for the lateral gastrocnemius and vastus medialis showed significant differences in muscle thickness and pennation angle between heel heights. Conclusion: The findings of this study indicate that increased heel height would enhance the immediate effects on muscle morphology as well as plantar pressure redistribution potentially causing lower limb muscle fatigue and injuries.


2010 ◽  
Vol 25 (1) ◽  
pp. 88-94 ◽  
Author(s):  
K. Oberhofer ◽  
N.S. Stott ◽  
K. Mithraratne ◽  
I.A. Anderson

2017 ◽  
Vol 57 ◽  
pp. 114-115
Author(s):  
Britta Hanssen ◽  
Simon-Henri Schless ◽  
Marije Goudriaan ◽  
Lynn Bar-On ◽  
Kaat Desloovere

2021 ◽  
Vol 14 ◽  
Author(s):  
Victor Munoz-Martel ◽  
Alessandro Santuz ◽  
Sebastian Bohm ◽  
Adamantios Arampatzis

Understanding the neuromechanical responses to perturbations in humans may help to explain the reported improvements in stability performance and muscle strength after perturbation-based training. In this study, we investigated the effects of perturbations, induced by unstable surfaces, on the mechanical loading and the modular organization of motor control in the lower limb muscles during lunging forward and backward. Fifteen healthy adults performed 50 forward and 50 backward lunges on stable and unstable ground. Ground reaction forces, joint kinematics, and the electromyogram (EMG) of 13 lower limb muscles were recorded. We calculated the resultant joint moments and extracted muscle synergies from the stepping limb. We found sparse alterations in the resultant joint moments and EMG activity, indicating a little if any effect of perturbations on muscle mechanical loading. The time-dependent structure of the muscle synergy responsible for the stabilization of the body was modified in the perturbed lunges by a shift in the center of activity (later in the forward and earlier in the backward lunge) and a widening (in the backward lunge). Moreover, in the perturbed backward lunge, the synergy related to the body weight acceptance was not present. The found modulation of the modular organization of motor control in the unstable condition and related minor alteration in joint kinetics indicates increased control robustness that allowed the participants to maintain functionality in postural challenging settings. Triggering specific modulations in motor control to regulate robustness in the presence of perturbations may be associated with the reported benefits of perturbation-based training.


Sign in / Sign up

Export Citation Format

Share Document